ﻻ يوجد ملخص باللغة العربية
Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li+-bound and Li+-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li+ is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, allowing only two EC molecules to coordinate to Li+ directly. Our results demonstrate for the first time, to the best of our knowledge, the anion influence on the overall structure of the first solvation shell of the Li+ ion. The formation of such a cation/solvent/anion complex provides a rational explanation for the ionic conductivity drop of lithium/carbonate electrolyte solutions at high concentrations.
Among the beyond Li-ion battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaque
The reversibility and cyclability of anionic redox in battery electrodes hold the key to its practical employments. Here, through mapping of resonant inelastic X-ray scattering (mRIXS), we have independently quantified the evolving redox states of bo
Varying the amounts of silicon and carbon, different composites have been prepared by ball milling of Si, Ni$_{3.4}$Sn$_4$, Al and C. Silicon and carbon contents are varied from 10 to 30 wt.% Si, and 0 to 20 wt.% C. The microstructural and electroche
Nanoporous supercapacitors play an important role in modern energy storage systems, and their modeling is essential to predict and optimize the charging behaviour. Two classes of models have been developed that consist of finite and infinitely long p
Despite recent significant developments of Si composites, use of silicon with significance in the anodes for Li-ion batteries is still limited. In fact, nominal energy density is to be saturated around ~750 Wh/L regardless of cell-types under the cur