ﻻ يوجد ملخص باللغة العربية
We have developed a model in which the quantum fluctuations of the proton structure are characterised by hot spots, whose number grows with decreasing Bjorken-$x$. Our model reproduces the $F_2(x,Q^2)$ data from HERA at the relevant scale, as well as the exclusive and dissociative $mathrm{J/}psi$ photoproduction data from H1 and ALICE. Our model predicts that for $W_{gammamathrm{p}} approx 500$ GeV, the dissociative $mathrm{J/}psi$ cross section reaches a maximum and then decreases steeply with energy, which is in qualitatively good agreement to a recent observation that the dissociative $mathrm{J/}psi$ background in the exclusive $mathrm{J/}psi$ sample measured in photoproduction by ALICE decreases as energy increases. Our prediction provides a clear signature for gluon saturation at LHC energies.
$J/psi$ production in p-p ultra-peripheral collisions through the elastic and inelastic photoproduction processes, where the virtual photons emitted from the projectile interact with the target, are studied. The comparisions between the exact treatme
Using short distance QCD methods based on the operator product expansion, we calculate the $J/psi$ photoproduction cross section in terms of the gluon distribution function of the nucleon. Comparing the result with data, we show that experimental beh
We study diffractive photoproduction of $J/psi$ by taking the charm quark as a heavy quark. A description of nonperturbative effect related to $J/psi$ can be made by using NRQCD. In the forward region of the kinematics, the interaction between the $c
We calculate the photoproduction of double $J/psi$ ($Upsilon$) to leading order based on the nonrelativistic quantum chromodynamics factorization framework at the Large Hadron Collider with forward proton tagging. The numerical results of double $J/p
The near-threshold photoproduction of $J/psi$ is regarded as one golden process to unveil the nucleon mass structure, pentaquark state involving the charm quarks, and the poorly constrained gluon distribution of the nucleon at large $x$ ($>0.1$). In