ﻻ يوجد ملخص باللغة العربية
We calculate the photoproduction of double $J/psi$ ($Upsilon$) to leading order based on the nonrelativistic quantum chromodynamics factorization framework at the Large Hadron Collider with forward proton tagging. The numerical results of double $J/psi$ photoproduction pp $rightarrow$ p$gamma$p $rightarrow$ $J/psi$ + $J/psi$ with different forward detector acceptances ($xi$) are presented. The total cross section of double $J/psi$ photoproduction is less than 200 fb with 0.1 $<$ $xi$ $<$ 0.5, but can reach about 1.37(1.27) pb with 0.0015 $<$ $xi$ $<$ 0.5 ( 0.0015 $<$ $xi$ $<$ 0.15 ). The double $J/psi$ photoproduction may have the potential to be detected and provide an interesting signature, thus is useful for studying the mechanism of heavy quarkonium production. We also predict the double $Upsilon$ photoproduction and find they are, unfortunately, small (with less than 10 fb).
In this paper we probe the Sivers asymmetries through $rm J/psi$ photoproduction in $rm p^uparrow p$ collision within the non-relativistic QCD framework, based on color octet model and the Transverse Momentum Dependent Parton Distributions (TMDs). Bo
We evaluate the large momentum transfer $J/psi$ photoproduction with rapidity gaps in ultraperipheral proton-ion collisions at the LHC which provides an effective method of probing dynamics of large t elastic hard QCD Pomeron interactions. It is show
A process of Central Exclusive $pi^+pi^-$ production in proton-proton collisions and its theoretical description is presented. A possibility of its measurement, during the special low luminosity LHC runs, with the help of the ATLAS central detector f
We show that the use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and / or CMS can provide important information on the Higgs sector of the MSSM. We analyse central exclusive production of the neutral CP-e
In the spirit of Mueller-Navelet dijet production, we propose and study the inclusive production of a forward $J/psi$ and a very backward jet at the LHC as an observable to reveal high-energy resummation effects `a la BFKL. We obtain several predicti