ﻻ يوجد ملخص باللغة العربية
The level of random motions in the intracluster gas lying between 20 and 60 kpc radius in the core of the Perseus cluster has been measured by the Hitomi Soft X-ray Spectrometer at 164 +/- 10 km/s. The maximum energy density in turbulent motions on that scale is therefore low. If dissipated as heat the turbulent energy will be radiated away in less than 80 Myr and cannot spread across the core. A higher velocity is needed to prevent a cooling collapse. Gravity waves are shown to travel too slowly in a radial direction. Here we investigate propagation of energy by sound waves. The energy travels at about 1000 km/s and can cross the core in a cooling time. We show that the displacement velocity amplitude of the gas required to carry the power is consistent with the Hitomi result and that the inferred density and temperature variations are consistent with Chandra observations.
Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive
Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy co
We present a catalog of 5437 morphologically classified sources in the direction of the Perseus galaxy cluster core, among them 496 early-type low-mass galaxy candidates. The catalog is primarily based on V-band imaging data acquired with the William
We investigate the galaxy population in a field of the Perseus cluster that roughly covers the virial radius of the cluster. The galaxies were selected on Schmidt CCD images in B and H alpha in combination with SDSS images. We present a catalogue of
We describe the goals and first results of a Program for Imaging of the PERseus cluster of galaxies (PIPER). The first phase of the program builds on imaging of fields obtained with the Hubble Space Telescope (HST) ACS/WFC and WFC3/UVIS cameras. Our