ترغب بنشر مسار تعليمي؟ اضغط هنا

The galaxy population within the virial radius of the Perseus cluster

142   0   0.0 ( 0 )
 نشر من قبل Helmut Meusinger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the galaxy population in a field of the Perseus cluster that roughly covers the virial radius of the cluster. The galaxies were selected on Schmidt CCD images in B and H alpha in combination with SDSS images. We present a catalogue of 1294 galaxies. Morphological information was obtained for 90% of the galaxies from the `eyeball inspection, partly supported by the surface brightness profile analysis. Redshifts were taken from SDSS, literature sources, and own spectroscopic observations and are available for 24% of the catalogues galaxies. The galaxy catalogue is used to derive cluster properties, such as radial profiles, indications of sub-structure, virial mass, and viral radius and to study the cluster galaxy population with regard to morphological types and peculiarities, star formation rates and active galactic nuclei. In addition to the statistical approach, we present brief individual descriptions of 18 cluster galaxies with conspicuous morphological peculiarities. (Abstract modified to match the arXiv format.)



قيم البحث

اقرأ أيضاً

Previous X-ray studies of the Perseus Cluster, consisting of 85 Suzaku pointings along eight azimuthal directions, revealed a particularly steep decrease in the projected temperature profile near the virial radius (~r200) towards the northwest (NW). To further explore this shock candidate, another 4 Suzaku observations on the NW edge of the Perseus Cluster have been obtained. These deeper data were designed to provide the best possible control of systematic uncertainties in the spectral analysis. Using the combined Suzaku observations, we have carefully investigated this interesting region by analyzing the spectra of various annuli and extracting projected thermodynamic profiles. We find that the projected temperature profile shows a break near r200, indicating a shock with M = 1.9+-0.3. Corresponding discontinuities are also found in the projected emission measure and the density profiles at the same location. This evidence of a shock front so far away from the cluster center is unprecedented, and may provide a first insight into the properties of large-scale virial shocks which shape the process of galaxy cluster growth.
We present Suzaku observations of the galaxy cluster Abell 2029, which exploit Suzakus low particle background to probe the ICM to radii beyond those possible with previous observations (reaching out to the virial radius), and with better azimuthal c overage. We find significant anisotropies in the temperature and entropy profiles, with a region of lower temperature and entropy occurring to the south east, possibly the result of accretion activity in this direction. Away from this cold feature, the thermodynamic properties are consistent with an entropy profile which rises, but less steeply than the predictions of purely gravitational hierarchical structure formation. Excess emission in the northern direction can be explained due to the overlap of the emission from the outskirts of Abell 2029 and nearby Abell 2033 (which is at slightly higher redshift). These observations suggest that the assumptions of spherical symmetry and hydrostatic equilibrium break down in the outskirts of galaxy clusters, which poses challenges for modelling cluster masses at large radii and presents opportunities for studying the formation and accretion history of clusters.
111 - Anna Patej , Abraham Loeb 2015
Recent simulations have indicated that the dark matter halos of galaxy clusters should feature steep density jumps near the virial radius. Since the member galaxies are expected to follow similar collisionless dynamics as the dark matter, the galaxy density profile should show such a feature as well. We examine the potential of current datasets to test this prediction by selecting cluster members for a sample of 56 low-redshift (0.1<z<0.3) galaxy clusters, constructing their projected number density profiles, and fitting them with two profiles, one with a steep density jump and one without. Additionally, we investigate the presence of a jump using a non-parametric spline approach. We find that some of these clusters show strong evidence for a model with a density jump. We discuss avenues for further analysis of the density jump with future datasets.
We present joint Suzaku and Chandra observations of MKW4. With a global temperature of 1.6 keV, MKW4 is one of the smallest galaxy groups that have been mapped in X-rays out to the virial radius. We measure its gas properties from its center to the v irial radius in the north, east, and northeast directions. Its entropy profile follows a power-law of $propto r^{1.1}$ between R$_{500}$ and R$_{200}$ in all directions, as expected from the purely gravitational structure formation model. The well-behaved entropy profiles at the outskirts of MKW4 disfavor the presence of gas clumping or thermal non-equilibrium between ions and electrons in this system. We measure an enclosed baryon fraction of 11% at R$_{200}$, remarkably smaller than the cosmic baryon fraction of 15%. We note that the enclosed gas fractions at R$_{200}$ are systematically smaller for groups than for clusters from existing studies in the literature. The low baryon fraction of galaxy groups, such as MKW4, suggests that their shallower gravitational potential well may make them more vulnerable to baryon losses due to AGN feedback or galactic winds. We find that the azimuthal scatter of various gas properties at the outskirts of MKW4 is significantly lower than in other systems, suggesting that MKW4 is a spherically symmetric and highly relaxed system.
105 - David A. Buote 2016
In this second paper on the entire virial region of the relaxed fossil cluster RXJ1159+5531, we present a hydrostatic analysis of the hot intracluster medium (ICM). For a model consisting of ICM, stellar mass from the central galaxy (BCG), and an NFW dark matter (DM) halo, we obtain good descriptions of the projected radial profiles of ICM emissivity and temperature. The BCG stellar mass is clearly detected with M_star/L_K = 0.61 +/- 0.11 solar, consistent with stellar population synthesis models for a Milky-Way IMF. We obtain a halo concentration, c_200 =8.4 +/- 1.0, and virial mass, M_200 = 7.9 +/- 0.6 x 10^13 M_sun. For its mass, the inferred concentration is larger than most relaxed halos produced in cosmological simulations with Planck parameters, consistent with RXJ1159+5531 forming earlier than the general halo population. The baryon fraction at r_200, f_b,200 = 0.134 +/- 0.007, is slightly below the Planck value (0.155) for the universe. When we account for the stellar baryons associated with non-central galaxies and the uncertain intracluster light, f_b,200 increases by ~0.015, consistent with the cosmic value. Performing our analysis in the context of MOND still requires a large DM fraction (85.0% +/- 2.5% at r=100 kpc) similar to that obtained using the standard Newtonian approach. The detection of a plausible stellar BCG mass component distinct from the NFW DM halo in the total gravitational potential suggests that ~10^14 M_sun represents the mass scale above which dissipation is unimportant in the formation of the central regions of galaxy clusters. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا