ﻻ يوجد ملخص باللغة العربية
Deterministic preparation of an ultracold harmonically trapped one-dimensional Fermi gas consisting of a few fermions has been realized by the Heidelberg group. Using Floquet formalism, we study the time dynamics of two- and three-fermion systems in a harmonic trap under an oscillating magnetic field. The oscillating magnetic field produces a time-dependent interaction strength through a Feshbach resonance. We explore the dependence of these dynamics on the frequency of the oscillating magnetic field for non-interacting, weakly interacting, and strongly interacting systems. We identify the regimes where the system can be described by an effective two-state model and an effective three-state model. We find an unbounded coupling to all excited states at the infinitely strong interaction limit and several simple relations that characterize the dynamics. Based on our findings, we propose a technique for driving transition from the ground state to the excited states using an oscillating magnetic field.
Properties of a single impurity in a one-dimensional Fermi gas are investigated in homogeneous and trapped geometries. In a homogeneous system we use McGuires expression [J. B. McGuire, J. Math. Phys. 6, 432 (1965)] to obtain interaction and kinetic
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the in
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles
We study the spin-mixing dynamics of a one-dimensional strongly repulsive Fermi gas under harmonic confinement. By employing a mapping onto an inhomogeneous isotropic Heisenberg model and the symmetries under particle exchange, we follow the dynamics
We study the viscous properties of a system of weakly interacting spin-$frac{1}{2}$ fermions in one dimension. Accounting for the effect of interactions on the quasiparticle energy spectrum, we obtain the bulk viscosity of this system at low temperat