ترغب بنشر مسار تعليمي؟ اضغط هنا

A new proof of the fundamental two-term transformation for the series ${}_3F_2(1)$ due to Thomae

90   0   0.0 ( 0 )
 نشر من قبل Arjun Kumar Rathie
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Arjun K. Rathie




اسأل ChatGPT حول البحث

The aim of this short note is to provide a very simple proof for obtaining the fundamental two-term transformation for the series ${}_3F_2(1)$ due to Thomae.

قيم البحث

اقرأ أيضاً

The aim in this note is to provide a generalization of an interesting entry in Ramanujans Notebooks that relate sums involving the derivatives of a function Phi(t) evaluated at 0 and 1. The generalization obtained is derived with the help of expressi ons for the sum of terminating 3F2 hypergeometric functions of argument equal to 2, recently obtained in Kim et al. [Two results for the terminating 3F2(2) with applications, Bull. Korean Math. Soc. 49 (2012) pp. 621{633]. Several special cases are given. In addition we generalize a summation formula to include integral parameter differences.
142 - Anirban Dawn 2020
It is shown that the Laurent series of a holomorphic function smooth up to the boundary on a Reinhardt domain in $mathbb{C}^n$ converges unconditionally to the function in the Fr{e}chet topology of the space of functions smooth up to the boundary.
This article contains a complete proof of Gabrielovs rank Theorem, a fundamental result in the study of analytic map germs. Inspired by the works of Gabrielov and Tougeron, we develop formal-geometric techniques which clarify the difficult parts of t he original proof. These techniques are of independent interest, and we illustrate this by adding a new (very short) proof of the Abhyankar-Jung Theorem. We include, furthermore, new extensions of the rank Theorem (concerning the Zariski main Theorem and elimination theory) to commutative algebra.
49 - Matt Hohertz 2020
In his 2006 paper, Jin proves that Kalantaris bounds on polynomial zeros, indexed by $m leq 2$ and called $L_m$ and $U_m$ respectively, become sharp as $mrightarrowinfty$. That is, given a degree $n$ polynomial $p(z)$ not vanishing at the origin and an error tolerance $epsilon > 0$, Jin proves that there exists an $m$ such that $frac{L_m}{rho_{min}} > 1-epsilon$, where $rho_{min} := min_{rho:p(rho) = 0} left|rhoright|$. In this paper we derive a formula that yields such an $m$, thereby constructively proving Jins theorem. In fact, we prove the stronger theorem that this convergence is uniform in a sense, its rate depending only on $n$ and a few other parameters. We also give experimental results that suggest an optimal m of (asymptotically) $Oleft(frac{1}{epsilon^d}right)$ for some $d ll 2$. A proof of these results would show that Jins method runs in $Oleft(frac{n}{epsilon^d}right)$ time, making it efficient for isolating polynomial zeros of high degree.
Expressions for the summation of a new series involving the Laguerre polynomials are obtained in terms of generalized hypergeometric functions. These results provide alternative, and in some cases simpler, expressions to those recently obtained in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا