ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi Large Area Telescope Observations of the Monoceros Loop Supernova Remnant

61   0   0.0 ( 0 )
 نشر من قبل Hideaki Katagiri Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the gamma-ray measurements by the Large Area Telescope onboard the textit{Fermi Gamma-ray Space Telescope} in the region of the supernova remnant~(SNR) Monoceros Loop~(G205.5$+$0.5). The brightest gamma-ray peak is spatially correlated with the Rosette Nebula, which is a molecular cloud complex adjacent to the southeast edge of the SNR. After subtraction of this emission by spatial modeling, the gamma-ray emission from the SNR emerges, which is extended and fit by a Gaussian spatial template. The gamma-ray spectra are significantly better reproduced by a curved shape than a simple power law. The luminosities between 0.2--300~GeV are $sim$~$4 times 10^{34}$~erg~s$^{-1}$ for the SNR and $sim$~$3 times 10^{34}$~erg~s$^{-1}$ for the Rosette Nebula, respectively. We argue that the gamma rays likely originate from the interactions of particles accelerated in the SNR. The decay of neutral pions produced in nucleon-nucleon interactions of accelerated hadrons with interstellar gas provides a reasonable explanation for the gamma-ray emission of both the Rosette Nebula and the Monoceros SNR.

قيم البحث

اقرأ أيضاً

We present observations of the young Supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0.55$^{circ} pm 0.04^{circ}$ matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allows us to identify the LAT source with the supernova remnant RX J1713.7-3946. The spectrum of the source can be described by a very hard power-law with a photon index of $Gamma = 1.5 pm 0.1$ that coincides in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.
248 - J. H. K. Wu 2011
We report the discovery of GeV emission at the position of supernova remnant Kes 17 by using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance of ~12 sigma in the 1 - 20 GeV range. Moreover, a number of gamma-ray sources were detected in its vicinity. The gamma-ray spectrum of Kes 17 can be well described by a simple power-law with a photon index of ~ 2.4. Together with the multi-wavelength evidence for its interactions with the nearby molecular cloud, the gamma-ray detection suggests that Kes 17 is a candidate acceleration site for cosmic-rays.
We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova remnant, which conta ins several regions of non-thermal emission detected in the radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2*3 degrees area south of the pulsar known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula (PWN) system and favor a scenario with two distinct electron populations.
We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119-6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119-6127 shows a single, wide peak offset from the radio peak by 0.43 pm 0.02 in phase. Spectral analysis suggests a power law of index 1.0 pm 0.3 with an energy cut-off at 0.8 pm 0.2 GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119-6127 and demonstrate that despite the objects high surface magnetic field---near that of magnetars---the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gam-ray pulsed emission for the magnetically active PSR J1846-0258 in the supernova remnant Kesteven 75 and two other energetic high-B pulsars, PSRs J1718-3718 and J1734-3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.
249 - Qiang Yuan 2017
The remnant of supernova explosion is widely believed to be the acceleration site of high-energy cosmic ray particles. The acceleration timescale is, however, typically very long. Here we report the detection of a variable $gamma$-ray source with the Fermi Large Area Telescope, which is positionally and temporally consistent with a peculiar supernova, iPTF14hls. A quasi-stellar object SDSS J092054.04+504251.5, which is probably a blazar according to the infrared data, is found in the error circle of the $gamma$-ray source. More data about the $gamma$-ray source and SDSS J092054.04+504251.5 are needed to confirm their association. On the other hand, if the association between the $gamma$-ray source and the supernova is confirmed, this would be the first time to detect high-energy $gamma$-ray emission from a supernova, suggesting very fast particle acceleration by supernova explosions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا