ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi Large Area Telescope observations of the Vela-X Pulsar Wind Nebula

118   0   0.0 ( 0 )
 نشر من قبل Marianne Lemoine-Goumard
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2*3 degrees area south of the pulsar known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula (PWN) system and favor a scenario with two distinct electron populations.



قيم البحث

اقرأ أيضاً

The Vela supernova remnant is the closest supernova remnant to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is the archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spann ing a region of 2{deg} x 3{deg} south of the pulsar and observed in the radio, X-ray and very high energy gamma-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have re-investigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 years of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.
Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV gamma-ray emitters. Since launch, the Fermi Large Area Telescope (LAT)identified five high-energy (100MeV <E< 100 GeV) gamma-ray sources as PWNe, and detected a large number of PWNe candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV gamma-ray unidentifiedsources (UNIDs) are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58TeV PWNe and UNIDs within 5deg of the Galactic Plane to establish new constraints on PWNe properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their gamma-rayfluxes for energies above 10 GeV. The spectral energy distributions (SED) andupper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e. between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWNe candidates are described in detail and compared with existing models. A population study of GeV PWNe candidates as a function of the pulsar/PWN system characteristics is presented.
We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119-6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119-6127 shows a single, wide peak offset from the radio peak by 0.43 pm 0.02 in phase. Spectral analysis suggests a power law of index 1.0 pm 0.3 with an energy cut-off at 0.8 pm 0.2 GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119-6127 and demonstrate that despite the objects high surface magnetic field---near that of magnetars---the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gam-ray pulsed emission for the magnetically active PSR J1846-0258 in the supernova remnant Kesteven 75 and two other energetic high-B pulsars, PSRs J1718-3718 and J1734-3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.
We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between sim100 MeV and sim100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to sim10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity integrated CO intensity (WCO) at a 1{deg} times1{deg} pixel level. The correlation is found to be linear over a WCO range of ~10 fold when divided in 3 regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The Wco-to-mass conversion factor, Xco, is found to be sim2.3times10^20 cm-2(K km s-1)-1 for the high-longitude part of Orion A (l > 212{deg}), sim1.7 times higher than sim1.3 times 10^20 found for the rest of Orion A and B. We interpret the apparent high Xco in the high-longitude region of Orion A in the light of recent works proposing a non-linear relation between H2 and CO densities in the diffuse molecular gas. Wco decreases faster than the H2 column density in the region making the gas darker to Wco.
157 - G. G. Pavlov 2010
Previous observations of the middle-aged pulsar Geminga with XMM-Newton and Chandra have shown an unusual pulsar wind nebula (PWN), with a 20 long central (axial) tail directed opposite to the pulsars proper motion and two 2 long, bent lateral (outer ) tails. Here we report on a deeper (78 ks) Chandra observation and a few additional XMM-Newton observations of the Geminga PWN. The new Chandra observation has shown that the axial tail, which includes up to three brighter blobs, extends at least 50 (i.e., 0.06 d_{250} pc) from the pulsar. It also allowed us to image the patchy outer tails and the emission in the immediate vicinity of the pulsar with high resolution. The PWN luminosity, L_{0.3-8 keV} ~ 3times 10^{29} d_{250}^2 erg/s, is lower than the pulsars magnetospheric luminosity by a factor of 10. The spectra of the PWN elements are rather hard (photon index ~ 1). Comparing the two Chandra images, we found evidence of PWN variability, including possible motion of the blobs along the axial tail. The X-ray PWN is the synchrotron radiation from relativistic particles of the pulsar wind; its morphology is connected with the supersonic motion of Geminga. We speculate that the outer tails are either (1) a sky projection of the limb-brightened boundary of a shell formed in the region of contact discontinuity, where the wind bulk flow is decelerated by shear instability, or (2) polar outflows from the pulsar bent by the ram pressure from the ISM. In the former case, the axial tail may be a jet emanating along the pulsars spin axis, perhaps aligned with the direction of motion. In the latter case, the axial tail may be the shocked pulsar wind collimated by the ram pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا