ترغب بنشر مسار تعليمي؟ اضغط هنا

Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin

62   0   0.0 ( 0 )
 نشر من قبل Jing Liu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A light yield of 20.4 $pm$ 0.8 photoelectrons/keV was achieved with an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin. This is by far the largest yield in the world achieved with CsI crystals. An energy threshold that is several times lower than the current dark matter experiments utilizing CsI(Tl) crystals may be achievable using this technique. Together with novel CsI crystal purification methods, the technique may be used to improve the sensitivities of dark matter and coherent elastic neutrino-nucleus scattering experiments. Also measured were the scintillation light decay constants of the undoped CsI crystal at both room temperature and 77 Kelvin. The results are consistent with those in the literature.



قيم البحث

اقرأ أيضاً

137 - J. Brack , B. Delgado , J. Dhooghe 2012
Future large water Cherenkov and scintillator detectors have been proposed for measurements of long baseline neutrino oscillations, proton decay, supernova and solar neutrinos. To ensure cost-effectiveness and optimize scientific reach, one of the cr itical requirements for such detectors are large-area, high performance photomultiplier tubes (PMTs). One candidate for such a device is the Hamamatsu R11780, a 12 PMT that is available in both standard and high quantum efficien
In this study, we evaluate and compare the pulse shape discrimination (PSD) performance of multipixel photon counters (MPPCs, also known as silicon photomultiphers - SiPMs) with that of a typical photomultiplier tube (PMT) when testing using CsI(Tl) scintillators. We use the charge comparison method, whereby we discriminate different types of particles by the ratio of charges integrated within two time-gates (the delayed part and the entire digitized waveform). For a satisfactory PSD performance, a setup should generate many photoelectrons (p.e.) and collect their charges efficiently. The PMT setup generates more p.e. than the MPPC setup does. With the same digitizer and the same long time-gate (the entire digitized waveform), the PMT setup is also better in charge collection. Therefore, the PMT setup demonstrates better PSD performance. We subsequently test the MPPC setup using a new data acquisition (DAQ) system. Using this new DAQ, the long time-gate is extended by nearly four times the length when using the previous digitizer. With this longer time-gate, we collect more p.e. at the tail part of the pulse and almost all the charges of the total collected p.e. Thus, the PSD performance of the MPPC setup is improved significantly. This study also provides an estimation of the short time-gate (the delayed part of the digitized waveform) that can give a satisfactory PSD performance without an extensive analysis to optimize this gate.
The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.
128 - D. Gooding , J. Gruszko , C. Grant 2018
Liquid scintillators doped with metals are needed for a variety of measurements in nuclear and particle physics. Nanoparticles provide a mechanism to dope the scintillator and their unique optical properties could be used to enhance detection capabil ities. We present here the first study of lead-based perovskite nanoparticles for this application. Perovskites are an attractive choice due to the versatility of their crystal structure and their ease of synthesis.
191 - L. Cadamuro , M.Calvi , L. Cassina 2014
The aim of this paper is to fully characterize the new multi-anode photomultiplier tube R11265-103-M64, produced by Hamamatsu. Its high effective active area (77%), its pixel size, the low dark signal rate and the capability to detect single photon s ignals make this tube suitable for an application in high energy physics, such as for RICH detectors. Four tubes and two different bias voltage dividers have been tested. The results of a standard characterization of the gain and the anode uniformity, the dark signal rate, the cross-talk and the device behaviour as a function of temperature have been studied. The behaviour of the tube is studied in a longitudinal magnetic field up to 100 Gauss. Shields made of a high permeability material are also investigated. The deterioration of the device performance due to long time operation at intense light exposure is studied. A quantitative analysis of the variation of the gain and the dark signals rate due to the aging is described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا