ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to fully characterize the new multi-anode photomultiplier tube R11265-103-M64, produced by Hamamatsu. Its high effective active area (77%), its pixel size, the low dark signal rate and the capability to detect single photon signals make this tube suitable for an application in high energy physics, such as for RICH detectors. Four tubes and two different bias voltage dividers have been tested. The results of a standard characterization of the gain and the anode uniformity, the dark signal rate, the cross-talk and the device behaviour as a function of temperature have been studied. The behaviour of the tube is studied in a longitudinal magnetic field up to 100 Gauss. Shields made of a high permeability material are also investigated. The deterioration of the device performance due to long time operation at intense light exposure is studied. A quantitative analysis of the variation of the gain and the dark signals rate due to the aging is described.
Future large water Cherenkov and scintillator detectors have been proposed for measurements of long baseline neutrino oscillations, proton decay, supernova and solar neutrinos. To ensure cost-effectiveness and optimize scientific reach, one of the cr
Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generat
We present a detailed characterisation of the new Hamamatsu R12199-01 HA MOD 3-inch photomultiplier tube (PMT) which is under consideration for the use in segmented optical modules of deep-ice neutrino detectors at the South Pole. Because of the sign
The Hamamatsu R5912-02Mod photomultiplier tube (PMT) will be used in the DUNE dual-phase module, a 10-kton fiducial volume liquid-argon time-projection chamber, which is one of the four projected far-detector modules of the DUNE long-baseline neutrin
The response of a position-sensitive Li-glass scintillator detector being developed for thermal-neutron detection with 6 mm position resolution has been investigated using collimated beams of thermal neutrons. The detector was moved perpendicularly t