ﻻ يوجد ملخص باللغة العربية
New ranking algorithms are continually being developed and refined, necessitating the development of efficient methods for evaluating these rankers. Online ranker evaluation focuses on the challenge of efficiently determining, from implicit user feedback, which ranker out of a finite set of rankers is the best. Online ranker evaluation can be modeled by dueling ban- dits, a mathematical model for online learning under limited feedback from pairwise comparisons. Comparisons of pairs of rankers is performed by interleaving their result sets and examining which documents users click on. The dueling bandits model addresses the key issue of which pair of rankers to compare at each iteration, thereby providing a solution to the exploration-exploitation trade-off. Recently, methods for simultaneously comparing more than two rankers have been developed. However, the question of which rankers to compare at each iteration was left open. We address this question by proposing a generalization of the dueling bandits model that uses simultaneous comparisons of an unrestricted number of rankers. We evaluate our algorithm on synthetic data and several standard large-scale online ranker evaluation datasets. Our experimental results show that the algorithm yields orders of magnitude improvement in performance compared to stateof- the-art dueling bandit algorithms.
Online ranker evaluation is a key challenge in information retrieval. An important task in the online evaluation of rankers is using implicit user feedback for inferring preferences between rankers. Interleaving methods have been found to be efficien
We propose and study Collpasing Bandits, a new restless multi-armed bandit (RMAB) setting in which each arm follows a binary-state Markovian process with a special structure: when an arm is played, the state is fully observed, thus collapsing any unc
We formulate and study a novel multi-armed bandit problem called the qualitative dueling bandit (QDB) problem, where an agent observes not numeric but qualitative feedback by pulling each arm. We employ the same regret as the dueling bandit (DB) prob
We introduce the dueling teams problem, a new online-learning setting in which the learner observes noisy comparisons of disjoint pairs of $k$-sized teams from a universe of $n$ players. The goal of the learner is to minimize the number of duels requ
A version of the dueling bandit problem is addressed in which a Condorcet winner may not exist. Two algorithms are proposed that instead seek to minimize regret with respect to the Copeland winner, which, unlike the Condorcet winner, is guaranteed to