ﻻ يوجد ملخص باللغة العربية
Transient single-particle spectral function of BaFe$_{2}$As$_{2}$, a parent compound of iron-based superconductors, has been studied by time- and angle-resolved photoemission spectroscopy with an extreme-ultraviolet laser generated by higher harmonics from Ar gas, which enables us to investigate the dynamics in the entire Brillouin zone. We observed electronic modifications from the spin-density-wave (SDW) ordered state within $sim$ 1 ps after the arrival of a 1.5 eV pump pulse. We observed optically excited electrons at the zone center above $E_{F}$ at 0.12 ps, and their rapid decay. After the fast decay of the optically excited electrons, a thermalized state appears and survives for a relatively long time. From the comparison with the density-functional theory band structure for the paramagnetic and SDW states, we interpret the experimental observations as the melting of the SDW. Exponential decay constants for the thermalized state to recover back to the SDW ground state are $sim$ 0.60 ps both around the zone center and the zone corner.
We performed polarization- and photon-energy-dependent angle-resolved photoemission spectroscopy of a slightly overdoped iron pnictide superconductor, BaFe$_{1.8}$Co$_{0.2}$As$_{2}$, to clarify the three-dimensional electronic structure including its
The isovalent-substituted iron pnictide compound SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ exhibits multiple evidence for nodal superconductivity via various experimental probes, such as the penetration depth, nuclear magnetic resonance and specific heat m
Characterizing and controlling electronic properties of quantum materials require direct measurements of non-equilibrium electronic band structures over large regions of momentum space. Here, we demonstrate an experimental apparatus for time- and ang
In this article we review our angle- and time-resolved photoemission studies (ARPES and trARPES) on various ferropnictides.
We have performed high resolution angle-resolved photoemission measurements on superconducting electron-doped NaFe$_{0.95}$Co$_{0.05}$As ($T_{c}sim$18 K). We observed a hole-like Fermi surface around the zone center and two electron-like Fermi surfac