ﻻ يوجد ملخص باللغة العربية
We show that avoiding bends in a current-carrying superconducting nanowire enhances the probability for low energy photons to be detected and that this enhancement is entirely due to the increase in the experimentally achievable critical current. We studied nanowires shaped as either meander or spiral. The spirals had different layouts, a double-spiral layout with an S-turn in the middle and a single-spiral layout without such turn. Nanowires were prepared from films of niobium nitride with a thickness of 5 nm. For specimens with each layout we measured the spectra of the single-photon response in the wavelength range from 400 nm to 1600 nm and defined the cut-off wavelength ${lambda}c$ beyond which the response rolls off. The largest and the smallest ${lambda}c$ were found for the single-spiral layout and for the meander, respectively. For all three layouts the relationship between ${lambda}c$ and the relative bias current falls onto a universal curve which has been predicted earlier in the framework of the modified hot-spot model. For the single-spiral layout, the efficiency of photon detection at wavelengths smaller than ${lambda}c$ reaches the expected absorbance of the spiral structure and the timing jitter per unit length of the nanowire has the smallest value.
We find the relation between the energy of the absorbed photon and the threshold current at which the resistive state appears in the current-carrying superconducting film with the probability about unity. In our calculations we use the modified hot s
We estimate the depairing current of superconducting nanowire single photon detectors (SNSPDs) by studying the dependence of the nanowires kinetic inductance on their bias current. The kinetic inductance is determined by measuring the resonance frequ
We theoretically study the dependence of the intrinsic detection efficiency (IDE) of superconducting single photon detector on the applied current $I$ and magnetic field $H$. We find that the current, at which the resistive state appears in the super
Counting rate is a key parameter of superconducting nanowire single photon detectors (SNSPD) and is determined by the current recovery time of an SNSPD after a detection event. We propose a new method to study the transient detection efficiency (DE)
We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens n