ﻻ يوجد ملخص باللغة العربية
Modern mobile systems use a single input-to-display path to serve all applications. In meeting the visual goals of all applications, the path has a latency inadequate for many important interactions. To accommodate the different latency requirements and visual constraints by different interactions, we present POLYPATH, a system design in which application developers (and users) can choose from multiple path designs for their application at any time. Because a POLYPATH system asks for two or more path designs, we present a novel fast path design, called Presto. Presto reduces latency by judiciously allowing frame drops and tearing. We report an Android 5-based prototype of POLYPATH with two path designs: Android legacy and Presto. Using this prototype, we quantify the effectiveness, overhead, and user experience of POLYPATH, especially Presto, through both objective measurements and subjective user assessment. We show that Presto reduces the latency of legacy touchscreen drawing applications by almost half; and more importantly, this reduction is orthogonal to that of other popular approaches and is achieved without any user-noticeable negative visual effect. When combined with touch prediction, Presto is able to reduce the touch latency below 10 ms, a remarkable achievement without any hardware support.
Emerging storage systems with new flash exhibit ultra-low latency (ULL) that can address performance disparities between DRAM and conventional solid state drives (SSDs) in the memory hierarchy. Considering the advanced low-latency characteristics, di
We present Pylot, a platform for autonomous vehicle (AV) research and development, built with the goal to allow researchers to study the effects of the latency and accuracy of their models and algorithms on the end-to-end driving behavior of an AV. T
In the envisioned 5G, uplink grant-free multiple access will become the enabler of ultra-reliable low-latency communications (URLLC) services. By removing the forward scheduling request (SR) and backward scheduling grant (SG), pilot-based channel est
Inconsistency in pairwise comparison judgements is often perceived as an unwanted phenomenon and researchers have proposed a number of techniques to either reduce it or to correct it. We take a viewpoint that this inconsistency unleashes different mi
Many neural network quantization techniques have been developed to decrease the computational and memory footprint of deep learning. However, these methods are evaluated subject to confounding tradeoffs that may affect inference acceleration or resou