ترغب بنشر مسار تعليمي؟ اضغط هنا

Supporting decisions by unleashing multiple mindsets using pairwise comparisons method

110   0   0.0 ( 0 )
 نشر من قبل Sajid Siraj
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Inconsistency in pairwise comparison judgements is often perceived as an unwanted phenomenon and researchers have proposed a number of techniques to either reduce it or to correct it. We take a viewpoint that this inconsistency unleashes different mindsets of the decision maker(s) that should be taken into account when generating recommendations as decision support. With this aim we consider the spanning trees analysis which is a recently emerging idea for use with the pairwise comparison approach that represents the plurality of mindsets (in terms of a plurality of vectors corresponding to different spanning trees). Until now, the multiplicity of the vectors supplied by the spanning trees approach have been amalgamated into a single preference vector, losing the information about the plurality of mindsets. To preserve this information, we propose a novel methodology taking an approach similar to Stochastic Multi-criteria Acceptability Analysis. Considering all the rankings of alternatives corresponding to the different mindsets, our methodology gives the probability that an alternative attains a given ranking position as well as the probability that an alternative is preferred to another one. Since the exponential number of spanning trees makes their enumeration prohibitive, we propose computing approximate probabilities using statistical sampling of the spanning trees. Our approach is also appealing because it can be applied also to incomplete sets of pairwise comparisons. We demonstrate its usefulness with a didactic example as well as with an application to a real-life case of selecting a Telecom backbone infrastructure for rural areas.



قيم البحث

اقرأ أيضاً

Model-based systems engineering (MBSE) provides an important capability for managing the complexities of system development. MBSE empowers the formalisms of system architectures for supporting model-based requirement elicitation, specification, desig n, development, testing, fielding, etc. However, the modeling languages and techniques are quite heterogeneous, even within the same enterprise system, which creates difficulties for data interoperability. The discrepancies among data structures and language syntaxes make information exchange among MBSE models even more difficult, resulting in considerable information deviations when connecting data flows across the enterprise. For this reason, this paper presents an ontology based upon graphs, objects, points, properties, roles, and relationships with entensions (GOPPRRE), providing meta models that support the various lifecycle stages of MBSE formalisms. In particular, knowledge-graph models are developed to support unified model representations to further implement ontological data integration based on GOPPRRE throughout the entire lifecycle. The applicability of the MBSE formalism is verified using quantitative and qualitative approaches. Moreover, the GOPPRRE ontologies are generated from the MBSE language formalisms in a domain-specific modeling tool, textit{MetaGraph} in order to evaluate its availiablity. The results demonstrate that the proposed ontology supports both formal structures and the descriptive logic of the systems engineering lifecycle.
We consider a non-zero-sum linear quadratic Gaussian (LQG) dynamic game with asymmetric information. Each player observes privately a noisy version of a (hidden) state of the world $V$, resulting in dependent private observations. We study perfect Ba yesian equilibria (PBE) for this game with equilibrium strategies that are linear in players private estimates of $V$. The main difficulty arises from the fact that players need to construct estimates on other players estimate on $V$, which in turn would imply that an infinite hierarchy of estimates on estimates needs to be constructed, rendering the problem unsolvable. We show that this is not the case: each players estimate on other players estimates on $V$ can be summarized into her own estimate on $V$ and some appropriately defined public information. Based on this finding we characterize the PBE through a backward/forward algorithm akin to dynamic programming for the standard LQG control problem. Unlike the standard LQG problem, however, Kalman filter covariance matrices, as well as some other required quantities, are observation-dependent and thus cannot be evaluated off-line through a forward recursion.
In this paper we propose a theoretical model including a susceptible-infected-recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium framework with agents mobility. The latter affect both their income (and consumption) and their probability of infecting and of being infected. Strategic complementarities among individual mobility choices drive the evolution of aggregate economic activity, while infection externalities caused by individual mobility affect disease diffusion. Rational expectations of forward looking agents on the dynamics of aggregate mobility and epidemic determine individual mobility decisions. The model allows to evaluate alternative scenarios of mobility restrictions, especially policies dependent on the state of epidemic. We prove the existence of an equilibrium and provide a recursive construction method for finding equilibrium(a), which also guides our numerical investigations. We calibrate the model by using Italian experience on COVID-19 epidemic in the period February 2020 - May 2021. We discuss how our economic SIRD (ESIRD) model produces a substantially different dynamics of economy and epidemic with respect to a SIRD model with constant agents mobility. Finally, by numerical explorations we illustrate how the model can be used to design an efficient policy of state-of-epidemic-dependent mobility restrictions, which mitigates the epidemic peaks stressing health system, and allows for trading-off the economic losses due to reduced mobility with the lower death rate due to the lower spread of epidemic.
We consider the problem of ranking $n$ players from partial pairwise comparison data under the Bradley-Terry-Luce model. For the first time in the literature, the minimax rate of this ranking problem is derived with respect to the Kendalls tau distan ce that measures the difference between two rank vectors by counting the number of
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا