ﻻ يوجد ملخص باللغة العربية
Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated with the analysis of time-resolved observations. Recently, the so-called macroturbulent broadening has been proposed to be a complementary and less expensive way -- in terms of observational time -- to investigate pulsations in massive stars. We assess to what extent this ubiquitous non-rotational broadening component shaping the line profiles of O stars and B supergiants is a spectroscopic signature of pulsation modes driven by a heat mechanism. We compute stellar main sequence and post-main sequence models from 3 to 70Msun with the ATON stellar evolution code and determine the instability domains for heat-driven modes for degrees l=1-20 using the adiabatic and non-adiabatic codes LOSC and MAD. We use the observational material presented in Simon-Diaz et al. (2016) to investigate possible correlations between the single snapshot line-broadening properties of a sample of ~260 O and B-type stars and their location inside/outside the various predicted instability domains. We present an homogeneous prediction for the non-radial instability domains of massive stars for degree l up to 20. We provide a global picture of what to expect from an observational point of view in terms of frequency range of excited modes, and investigate the behavior of the instabilities with stellar evolution and increasing degree of the mode. Furthermore, our pulsational stability analysis, once compared to the empirical results of Simon-Diaz et al. (2016), indicates that stellar oscillations originated by a heat mechanism can not explain alone the occurrence of the large non-rotational line-broadening component commonly detected in the O star and B supergiant domain.
We aim to provide new empirical clues about macroturbulent spectral line broadening in O- and B-type stars to evaluate its physical origin. We use high-resolution spectra of ~430 stars with spectral types in the range O4-B9 (all luminosity classes)
We analyse the OGLE-IV photometry of the first overtone and double-mode RR Lyrae stars (RRc/RRd) in the two fields towards the Galactic bulge observed with high cadence. In 27 per cent of RRc stars we find additional non-radial mode, with characteris
The IACOB spectroscopic survey of Galactic OB stars is an ambitious observational project aimed at compiling a large, homogeneous, high-resolution database of optical spectra of massive stars observable from the Northern hemisphere. The quantitative
Non-radial modes are excited in classical pulsators, both in Cepheids and in RR Lyrae stars. Firm evidence come from the first overtone pulsators, in which additional shorter period mode is detected with characteristic period ratio falling in between
In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the fiel