ﻻ يوجد ملخص باللغة العربية
The IACOB spectroscopic survey of Galactic OB stars is an ambitious observational project aimed at compiling a large, homogeneous, high-resolution database of optical spectra of massive stars observable from the Northern hemisphere. The quantitative spectroscopic analysis of this database, complemented by the invaluable information provided by Gaia (mainly regarding photometry and distances), will represent a major step forward in our knowledge of the fundamental physical characteristics of Galactic massive stars. In addition, results from this analysis will be of interest for other scientific questions to be investigated using Gaia observations. In this contribution we outline the present status of the IACOB spectroscopic database and indicate briefly some of the synergy links between the IACOB and Gaia scientific projects.
Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the
The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recen
Overview of the determination of astronomical distances from a metrological standpoint. Distances are considered from the Solar System (planetary distances) to extragalactic distances, with a special emphasis on the fundamental step of the trigonomet
The second Gaia data release (DR2, spring 2018) included a unique all-sky catalogue of large-amplitude long-period variables (LPVs) containing Miras and semi-regular variables. These stars are on the Asymptotic Giant Branch (AGB), and are characteriz
We use the framework developed as part of the MESA Isochrones and Stellar Tracks (MIST) project to assess the utility of several types of observables in jointly measuring the age and 1D stellar model parameters in star clusters. We begin with a pedag