ﻻ يوجد ملخص باللغة العربية
We investigate the distribution of field theories that arise from the low energy limit of flux vacua built on type IIB string theory compactified on the mirror quintic. For a large collection of these models, we numerically determine the distribution of Taylor coefficients in a polynomial expansion of each models scalar potential to fourth order, and show that they differ significantly from potentials generated by random choices of such coefficients over a flat measure.
We show that there are many compact subsets of the moduli space $M_g$ of Riemann surfaces of genus $g$ that do not intersect any symmetry locus. This has interesting implications for $mathcal{N}=2$ supersymmetric conformal field theories in four dimensions.
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include condensed matter systems with quenched disorder (e.g. spin glass) or cosmological systems in context of t
We consider deformations of torsion-free G2 structures, defined by the G2-invariant 3-form $phi$ and compute the expansion of the Hodge star of $phi$ to fourth order in the deformations of $phi$. By considering M-theory compactified on a G2 manifold,
We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitabl
Moduli with flat or run-away classical potentials are generic in theories based on supersymmetry and extra dimensions. They mix between themselves and with matter fields in kinetic terms and in the nonperturbative superpotentials. As the result, inte