ﻻ يوجد ملخص باللغة العربية
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include condensed matter systems with quenched disorder (e.g. spin glass) or cosmological systems in context of the string theory landscape (e.g. cosmic inflation). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.
$Circuit~ Complexity$, a well known computational technique has recently become the backbone of the physics community to probe the chaotic behaviour and random quantum fluctuations of quantum fields. This paper is devoted to the study of out-of-equil
I show that the problem of realizing inflation in theories with random potentials of a limited number of fields can be solved, and agreement with the observational data can be naturally achieved if at least one of these fields has a non-minimal kinet
We derive the general exact forms of the Wigner function, of mean values of conserved currents, of the spin density matrix, of the spin polarization vector and of the distribution function of massless particles for the free Dirac field at global ther
We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equ
This paper has been withdrawn to address an omission. It will be resubmitted in the near future.