ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel transfer learning method based on common space mapping and weighted domain matching

134   0   0.0 ( 0 )
 نشر من قبل Jim Jing-Yan Wang
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel learning framework for the problem of domain transfer learning. We map the data of two domains to one single common space, and learn a classifier in this common space. Then we adapt the common classifier to the two domains by adding two adaptive functions to it respectively. In the common space, the target domain data points are weighted and matched to the target domain in term of distributions. The weighting terms of source domain data points and the target domain classification responses are also regularized by the local reconstruction coefficients. The novel transfer learning framework is evaluated over some benchmark cross-domain data sets, and it outperforms the existing state-of-the-art transfer learning methods.



قيم البحث

اقرأ أيضاً

In this paper, we propose a novel weighted combination feature selection method using bootstrap and fuzzy sets. The proposed method mainly consists of three processes, including fuzzy sets generation using bootstrap, weighted combination of fuzzy set s and feature ranking based on defuzzification. We implemented the proposed method by combining four state-of-the-art feature selection methods and evaluated the performance based on three publicly available biomedical datasets using five-fold cross validation. Based on the feature selection results, our proposed method produced comparable (if not better) classification accuracies to the best of the individual feature selection methods for all evaluated datasets. More importantly, we also applied standard deviation and Pearsons correlation to measure the stability of the methods. Remarkably, our combination method achieved significantly higher stability than the four individual methods when variations and size reductions were introduced to the datasets.
We consider the transfer of experience samples (i.e., tuples < s, a, s, r >) in reinforcement learning (RL), collected from a set of source tasks to improve the learning process in a given target task. Most of the related approaches focus on selectin g the most relevant source samples for solving the target task, but then all the transferred samples are used without considering anymore the discrepancies between the task models. In this paper, we propose a model-based technique that automatically estimates the relevance (importance weight) of each source sample for solving the target task. In the proposed approach, all the samples are transferred and used by a batch RL algorithm to solve the target task, but their contribution to the learning process is proportional to their importance weight. By extending the results for importance weighting provided in supervised learning literature, we develop a finite-sample analysis of the proposed batch RL algorithm. Furthermore, we empirically compare the proposed algorithm to state-of-the-art approaches, showing that it achieves better learning performance and is very robust to negative transfer, even when some source tasks are significantly different from the target task.
120 - Xu Yang , Hong Qiao , 2014
We propose a weighted common subgraph (WCS) matching algorithm to find the most similar subgraphs in two labeled weighted graphs. WCS matching, as a natural generalization of the equal-sized graph matching or subgraph matching, finds wide application s in many computer vision and machine learning tasks. In this paper, the WCS matching is first formulated as a combinatorial optimization problem over the set of partial permutation matrices. Then it is approximately solved by a recently proposed combinatorial optimization framework - Graduated NonConvexity and Concavity Procedure (GNCCP). Experimental comparisons on both synthetic graphs and real world images validate its robustness against noise level, problem size, outlier number, and edge density.
We propose a dynamic boosted ensemble learning method based on random forest (DBRF), a novel ensemble algorithm that incorporates the notion of hard example mining into Random Forest (RF) and thus combines the high accuracy of Boosting algorithm with the strong generalization of Bagging algorithm. Specifically, we propose to measure the quality of each leaf node of every decision tree in the random forest to determine hard examples. By iteratively training and then removing easy examples from training data, we evolve the random forest to focus on hard examples dynamically so as to learn decision boundaries better. Data can be cascaded through these random forests learned in each iteration in sequence to generate predictions, thus making RF deep. We also propose to use evolution mechanism and smart iteration mechanism to improve the performance of the model. DBRF outperforms RF on three UCI datasets and achieved state-of-the-art results compared to other deep models. Moreover, we show that DBRF is also a new way of sampling and can be very useful when learning from imbalanced data.
Recent years, transfer learning has attracted much attention in the community of machine learning. In this paper, we mainly focus on the tasks of parameter transfer under the framework of extreme learning machine (ELM). Unlike the existing parameter transfer approaches, which incorporate the source model information into the target by regularizing the di erence between the source and target domain parameters, an intuitively appealing projective-model is proposed to bridge the source and target model parameters. Specifically, we formulate the parameter transfer in the ELM networks by the means of parameter projection, and train the model by optimizing the projection matrix and classifier parameters jointly. Further more, the `L2,1-norm structured sparsity penalty is imposed on the source domain parameters, which encourages the joint feature selection and parameter transfer. To evaluate the e ectiveness of the proposed method, comprehensive experiments on several commonly used domain adaptation datasets are presented. The results show that the proposed method significantly outperforms the non-transfer ELM networks and other classical transfer learning methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا