ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of positive eigenvalues of magnetic Schrodinger operators

172   0   0.0 ( 0 )
 نشر من قبل Hynek Kovarik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study sufficient conditions for the absence of positive eigenvalues of magnetic Schrodinger operators in $mathbb{R}^d,, dgeq 2$. In our main result we prove the absence of eigenvalues above certain threshold energy which depends explicitly on the magnetic and electric field. A comparison with the examples of Miller--Simon shows that our result is sharp as far as the decay of the magnetic field is concerned. As applications, we describe several consequences of the main result for two-dimensional Pauli and Dirac operators, and two and three dimensional Aharonov--Bohm operators.



قيم البحث

اقرأ أيضاً

We consider non-local Schrodinger operators with kinetic terms given by several different types of functions of the Laplacian and potentials decaying to zero at infinity, and derive conditions ruling embedded eigenvalues out. These results contrast a nd complement recent work on showing the existence of such eigenvalues occurring for the same types of operators under different conditions. Our goal in this paper is to advance techniques based on virial theorems, Mourre estimates, and an extended version of the Birman-Schwinger principle, previously developed for classical Schrodinger operators but thus far not used for non-local operators. We also present a number of specific cases by choosing particular classes of kinetic and potential terms of immediate interest.
We obtain new Faber-Krahn-type inequalities for certain perturbations of the Dirichlet Laplacian on a bounded domain. First, we establish a two- and three-dimensional Faber-Krahn inequality for the Schrodinger operator with point interaction: the opt imiser is the ball with the point interaction supported at its centre. Next, we establish three-dimensional Faber-Krahn inequalities for one- and two-body Schrodinger operator with attractive Coulomb interactions, the optimiser being given in terms of Coulomb attraction at the centre of the ball. The proofs of such results are based on symmetric decreasing rearrangement and Steiner rearrangement techniques; in the first model a careful analysis of certain monotonicity properties of the lowest eigenvalue is also needed.
We consider the interior transmission eigenvalue (ITE) problem, which arises when scattering by inhomogeneous media is studied. The ITE problem is not self-adjoint. We show that positive ITEs are observable together with plus or minus signs that are defined by the direction of motion of the corresponding eigenvalues of the scattering matrix (when the latter approach {bf$z=1$)}. We obtain a Weyl type formula for the counting function of positive ITEs, which are taken together with ascribed signs.
211 - P.G. Grinevich 2021
We study the transmission eigenvalues for the multipoint scatterers of the Bethe-Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions $d=2$ and $d=3$. We show that for these scatterers: 1) each positive energy $E$ is a transmission eigenvalue ( in the strong sense) of infinite multiplicity; 2) each complex $E$ is an interior transmission eigenvalue of infinite multiplicity. The case of dimension $d=1$ is also discussed.
We prove the existence of ground state in a multidimensional nonlinear Schrodinger model of paraxial beam propagation in isotropic local media with saturable nonlinearity. Such ground states exist in the form of bright counterpropagating solitons. Fr om the proof, a general threshold condition on the beam coupling constant for the existence of such fundamental solitons follows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا