ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous 3D bulk AC conduction within the Kondo gap of SmB$_6$ single crystals

62   0   0.0 ( 0 )
 نشر من قبل Nicholas Laurita
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kondo insulator SmB$_6$ has long been known to display anomalous transport behavior at low temperatures, T$<5$ K. In this temperatures range, a plateau is observed in the dc resistivity, contrary to the exponential divergence expected for a gapped system. Recent theoretical calculations suggest that SmB$_6$ may be the first topological Kondo insulator (TKI) and propose that the residual conductivity is due to topological surface states which reside within the Kondo gap. Since the TKI prediction many experiments have claimed to observe high mobility surface states within a perfectly insulating hybridization gap. Here, we investigate the low energy optical conductivity within the hybridization gap of single crystals of SmB$_6$ via time domain terahertz spectroscopy. Samples grown by both optical floating zone and aluminum flux methods are investigated to probe for differences originating from sample growth techniques. We find that both samples display significant 3D bulk conduction originating within the Kondo gap. Although SmB$_6$ may be a bulk dc insulator, it shows significant bulk ac conduction that is many orders of magnitude larger than any known impurity band conduction. The nature of these in-gap states and their coupling with the low energy spin excitons of SmB$_6$ is discussed. Additionally, the well defined conduction path geometry of our optical experiments allows us to show that any surface states, which lie below our detection threshold if present, must have a sheet resistance of R$/square ge$ 1000 $Omega$.

قيم البحث

اقرأ أيضاً

We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a cro ssover from bulk to surface conduction with a fully insulating bulk. We take the robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB$_6$, to be strong evidence for the topological insulator metallic surface states recently predicted for this material.
Recent quantum oscillation experiments on SmB$_6$ pose a paradox, for while the angular dependence of the oscillation frequencies suggest a 3D bulk Fermi surface, SmB$_6$ remains robustly insulating to very high magnetic fields. Moreover, a sudden lo w temperature upturn in the amplitude of the oscillations raises the possibility of quantum criticality. Here we discuss recently proposed mechanisms for this effect, contrasting bulk and surface scenarios. We argue that topological surface states permit us to reconcile the various data with bulk transport and spectroscopy measurements, interpreting the low temperature upturn in the quantum oscillation amplitudes as a result of surface Kondo breakdown and the high frequency oscillations as large topologically protected orbits around the X point. We discuss various predictions that can be used to test this theory.
145 - L. Sun , D.-J. Kim , Z. Fisk 2017
Several technical issues and challenges are identified and investigated for the planar tunneling spectroscopy of the topological Kondo insulator SmB$_6$. Contrasting behaviors of the tunnel junctions prepared in two different ways are analyzed and ex plained in detail. The conventional approach based on an AlO$_text{x}$ tunnel barrier results in unsatisfactory results due to the inter-diffusion between SmB$_6$ and deposited Al. On the contrary, plasma oxidation of SmB$_6$ crystals produces high-quality tunnel barriers on both (001) and (011) surfaces. Resultant conductance spectra are highly reproducible with clear signatures for the predicted surface Dirac fermions and the bulk hybridization gap as well. The surface states are identified to reside on two or one {it distinguishable} Dirac cone(s) on the (001) and (011) surface, respectively, in good agreement with the recent literature. However, their topological protection is found to be limited within the low energy region due to their inevitable interaction with the bulk excitations, called spin excitons, consistent with a recent theoretical prediction. Implications of our findings on other physical properties in SmB$_6$ and also other correlated topological materials are remarked.
A necessary element for the predicted topological state in Kondo insulator SmB$_6$ is the hybridization gap which opens in this compound at low temperatures. In this work, we present a comparative study of the in-gap density of states due to Sm vacan cies by Raman scattering spectroscopy and heat capacity for samples where the number of Sm vacancies is equal to or below 1 %. We demonstrate that hybridization gap is very sensitive to the presence of Sm vacancies. At the amount of vacancies above 1 % the gap fills in with impurity states and low temperature heat capacity is enhanced.
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the Kondo insulator SmB$_6$. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstru cted, Sm- or B-terminated surfaces were found. On the smallest patches, clear indications for the hybridization gap and inter-multiplet transitions were observed. On non-reconstructed surface areas large enough for coherent co-tunneling we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا