ﻻ يوجد ملخص باللغة العربية
A necessary element for the predicted topological state in Kondo insulator SmB$_6$ is the hybridization gap which opens in this compound at low temperatures. In this work, we present a comparative study of the in-gap density of states due to Sm vacancies by Raman scattering spectroscopy and heat capacity for samples where the number of Sm vacancies is equal to or below 1 %. We demonstrate that hybridization gap is very sensitive to the presence of Sm vacancies. At the amount of vacancies above 1 % the gap fills in with impurity states and low temperature heat capacity is enhanced.
Samarium hexaboride is a topological Kondo insulator, with metallic surface states manifesting from its insulating band structure. Since the insulating bulk itself is driven by strong correlations, both the bulk and surface host compelling magnetic a
The true topological nature of the Kondo insulator SmB$_6$ remains to be unveiled. Our previous tunneling study not only found evidence for the existence of surface Dirac fermions, but it also uncovered that they inherently interact with the spin exc
Several technical issues and challenges are identified and investigated for the planar tunneling spectroscopy of the topological Kondo insulator SmB$_6$. Contrasting behaviors of the tunnel junctions prepared in two different ways are analyzed and ex
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the Kondo insulator SmB$_6$. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstru
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a cro