ﻻ يوجد ملخص باللغة العربية
Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for the transcription factor binding (TFBS) site classification task. However, it remains unclear how these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence patterns from deep neural network models for TFBS classification. We demonstrate how to visualize and understand three important DNN models: convolutional, recurrent, and convolutional-recurrent networks. Our first visualization method is finding a test sequences saliency map which uses first-order derivatives to describe the importance of each nucleotide in making the final prediction. Second, considering recurrent models make predictions in a temporal manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific visualization strategy finds the optimal input sequence for a given TFBS positive class via stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent architecture performs the best among the three architectures. The visualization techniques indicate that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them.
When a Convolutional Neural Network is used for on-the-fly evaluation of continuously updating time-sequences, many redundant convolution operations are performed. We propose the method of Deep Shifting, which remembers previously calculated results
Deep neural networks (DNNs) although achieving human-level performance in many domains, have very large model size that hinders their broader applications on edge computing devices. Extensive research work have been conducted on DNN model compression
The pervasiveness of Internet-of-Things in our daily life has led to a recent surge in fog computing, encompassing a collaboration of cloud computing and edge intelligence. To that effect, deep learning has been a major driving force towards enabling
A deep neural network is a parametrization of a multilayer mapping of signals in terms of many alternatively arranged linear and nonlinear transformations. The linear transformations, which are generally used in the fully connected as well as convolu
We revisit the choice of SGD for training deep neural networks by reconsidering the appropriate geometry in which to optimize the weights. We argue for a geometry invariant to rescaling of weights that does not affect the output of the network, and s