ﻻ يوجد ملخص باللغة العربية
The crystal structures and magnetic properties of three previously unreported A2B2F7 pyrochlore materials, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7 are presented. In these compounds, either S=2 Fe2+ or S=5/2 Mn2+ is on the B site, while nonmagnetic Na and Ca (Na and Sr) are disordered on the A site. The materials, which were grown as crystals via the floating zone method, display high effective magnetic moments and large Curie-Weiss thetas. Despite these characteristics, freezing of the magnetic spins, characterized by peaks in the susceptibility or specific heat, is not observed until low temperatures. The empirical frustration index, f=- {theta}cw/Tf, for the materials are 36 (NaSrMn2F7), 27 (NaSrFe2F7), and 19 (NaCaFe2F7). AC susceptibility, DC susceptibility, and heat capacity measurements are used to characterize the observed spin glass behavior. The results suggest that the compounds are frustrated pyrochlore antiferromagnets with weak bond disorder. The magnetic phenomena that these fluoride pyrochlores exhibit, in addition to their availability as relatively large single crystals, make them promising candidates for the study of geometric magnetic frustration.
Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7, with the ground state selection proceeding by order by disorder induced throug
We have successfully grown cm3-size single crystals of the metallic-ferromagnet Sm2Mo2O7 by the floating-zone method using an infrared-red image furnace. The growth difficulties and the remedies found using a 2-mirror image furnace are discussed. Mag
Yb-based triangular magnets have recently attracted attention as promising candidates to explore frustrated quantum magnetism. However, some candidates have turned out to have significant amounts of site disorder, which significantly affects the low-
We discuss the ground state of a pyrochlore lattice of threefold-orbitally-degenerate $S=1/2$ magnetic ions. We derive an effective spin-orbital Hamiltonian and show that the orbital degrees of freedom can modulate the spin exchange, removing the inf
The magneto-electric (ME) coupling on spin-wave resonances in single-crystal Cu2OSeO3 was studied by a novel technique using electron spin resonance combined with electric field modulation. An external electric field E induces a magnetic field compon