ترغب بنشر مسار تعليمي؟ اضغط هنا

L-band Spectroscopy with Magellan-AO/Clio2: First Results on Young Low-Mass Companions

78   0   0.0 ( 0 )
 نشر من قبل Jordan Stone
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

L-band spectroscopy is a powerful probe of cool low-gravity atmospheres: The P, Q, and R branch fundamental transitions of methane near 3.3 $mu$m provide a sensitive probe of carbon chemistry; cloud thickness modifies the spectral slope across the band; and H$_{3}^{+}$ opacity can be used to detect aurorae. Many directly imaged gas-giant companions to nearby young stars exhibit L-band fluxes distinct from the field population of brown dwarfs at the same effective temperature. Here we describe commissioning the L-band spectroscopic mode of Clio2, the 1-5 $mu$m instrument behind the Magellan adaptive-optics system. We use this system to measure L-band spectra of directly imaged companions. Our spectra are generally consistent with the parameters derived from previous near-infrared spectra for these late M to early L type objects. Therefore, deviations from the field sequence are constrained to occur below 1500 K. This range includes the L-T transition for field objects and suggests that observed discrepancies are due to differences in cloud structure and CO/CH$_{4}$ chemistry.

قيم البحث

اقرأ أيضاً

We utilize the new Magellan adaptive optics system (MagAO) to image the binary proplyd LV 1 in the Orion Trapezium at H alpha. This is among the first AO results in visible wavelengths. The H alpha image clearly shows the ionization fronts, the inter proplyd shell, and the cometary tails. Our astrometric measurements find no significant relative motion between components over ~18 yr, implying that LV 1 is a low-mass system. We also analyze Large Binocular Telescope AO observations, and find a point source which may be the embedded protostars photosphere in the continuum. Converting the H magnitudes to mass, we show that the LV 1 binary may consist of one very-low-mass star with a likely brown dwarf secondary, or even plausibly a double brown dwarf. Finally, the magnetopause of the minor proplyd is estimated to have a radius of 110 AU, consistent with the location of the bow shock seen in H alpha.
Due to the recent dramatic technological advances, infrared interferometry can now be applied to new classes of objects, resulting in exciting new science prospects, for instance, in the area of high-mass star formation. Although extensively studied at various wavelengths, the process through which massive stars form is still only poorly understood. For instance, it has been proposed that massive stars might form like low-mass stars by mass accretion through a circumstellar disk/envelope, or otherwise by coalescence in a dense stellar cluster. After discussing the technological challenges which result from the special properties of these objects, we present first near-infrared interferometric observations, which we obtained on the massive YSO IRAS 13481-6124 using VLTI/AMBER infrared long-baseline interferometry and NTT speckle interferometry. From our extensive data set, we reconstruct a model-independent aperture synthesis image which shows an elongated structure with a size of 13x19 AU, consistent with a disk seen under an inclination of 45 degree. The measured wavelength-dependent visibilities and closure phases allow us to derive the radial disk temperature gradient and to detect a dust-free region inside of 9.5 AU from the star, revealing qualitative and quantitative similarities with the disks observed in low-mass star formation. In complementary mid-infrared Spitzer and sub-millimeter APEX imaging observations we detect two bow shocks and a molecular out ow which are oriented perpendicular to the disk plane and indicate the presence of a bipolar outflow emanating from the inner regions of the system.
We present results from the Large Adaptive optics Survey for Substellar Objects (LASSO), where the goal is to directly image new substellar companions (<70 M$_{Jup}$) at wide orbital separations ($gtrsim$50 AU) around young ($lesssim$300 Myrs), nearb y (<100 pc), low-mass ($approx$0.1-0.8 M$_{odot}$) stars. We report on 427 young stars imaged in the visible (i) and near-infrared (J or H) simultaneously with Robo-AO on the Kitt Peak 2.1-m telescope and later the Maunakea University of Hawaii 2.2-m telescope. To undertake the observations, we commissioned a new infrared camera for Robo-AO that uses a low-noise high-speed SAPHIRA avalanche photodiode detector. We detected 121 companion candidates around 111 stars, of which 62 companions are physically associated based on Gaia DR2 parallaxes and proper motions, another 45 require follow-up observations to confirm physical association, and 14 are background objects. The companion separations range from 2-1101 AU and reach contrast ratios of 7.7 magnitudes in the near infrared compared to the primary. The majority of confirmed and pending candidates are stellar companions, with ~5 being potentially substellar and requiring follow-up observations for confirmation. We also detected a 43$pm$9 M$_{Jup}$ and an 81$pm$5 M$_{Jup}$ companion that were previously reported. We found 34 of our targets have acceleration measurements detected using Hipparcos-Gaia proper motions. Of those, 58$^{+12}_{-14}$% of the 12 stars with imaged companion candidates have significant accelerations ($chi^2 >11.8$), while only 23$^{+11}_{-6}$% of the remaining 22 stars with no detected companion have significant accelerations. The significance of the acceleration decreases with increasing companion separation. These young accelerating low-mass stars with companions will eventually yield dynamical masses with future orbit monitoring.
We study a target sample of 68 low-mass objects (with spectral types in the range M4.5-L1) previously selected via photometric and astrometric criteria, as possible members of five young moving groups: the Local Association (Pleiades moving group, ag e=20 - 150 Myr), the Ursa Mayor group (Sirius supercluster, age=300 Myr), the Hyades supercluster (age=600 Myr), IC 2391 supercluster (age=35 - 55 Myr) and the Castor moving group (age=200 Myr). In this paper we assess their membership by using different kinematic and spectroscopic criteria. We use high resolution echelle spectroscopic observations of the sample to measure accurate radial velocities (RVs). Distances are calculated and compared to those of the moving group from the literature, we also calculate the kinematic Galactic components (U,V,W) of the candidate members and apply kinematic criterion of membership to each group. In addition we measure rotational velocities (v sin i) to place further constraints on membership of kinematic members. We find that 49 targets have young disk kinematics and that 36 of them possibly belong to one of our five moving groups. From the young disk target ob jects, 31 have rotational velocities in agreement with them belonging to the young disk population. We also find that one of our moving group candidates, 2MASS0123- 3610, is a low-mass double lined spectroscopic binary, with probable spectral types around M7.
We present spatially-resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85-m baseline Keck Interferometer. Ou r observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 microns wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power-law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br gamma emission line. The measured disk size at and around Br gamma suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا