ﻻ يوجد ملخص باللغة العربية
We present spatially-resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85-m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 microns wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power-law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br gamma emission line. The measured disk size at and around Br gamma suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
We present the first N-band nulling plus K- and L-band V2 observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris dis
The Galactic B[e] supergiant MWC 137 is surrounded by a large-scale optical nebula. To shed light on the physical conditions and kinematics of the nebula, we analyze the optical forbidden emission lines [NII] 6548,6583 and [SII] 6716,6731 in long-sli
Optical interferometry is a powerful tool to investigate the close environment of AGB stars. With a spatial resolution of a few milli-arcseconds, it is even possible to image directly the surface of angularly large objects. This is of special interes
(abbreviated) We investigate the spatial structure and spectral energy distribution of an edge-on circumstellar disk around an optically invisible young stellar object that is embedded in a dark cloud in the Carina Nebula. Whereas the object was dete
The inner regions of the discs of high-mass young stellar objects (HMYSOs) are still poorly known due to the small angular scales and the high visual extinction involved. We deploy near-infrared (NIR) spectro-interferometry to probe the inner gaseous