ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental test of photonic entanglement in accelerated reference frames

66   0   0.0 ( 0 )
 نشر من قبل Matthias Fink
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantization of the electromagnetic field has successfully paved the way for the development of the Standard Model of Particle Physics and has established the basis for quantum technologies. Gravity, however, continues to hold out against physicists efforts of including it into the framework of quantum theory. Experimental techniques in quantum optics have only recently reached the precision and maturity required for the investigation of quantum systems under the influence of gravitational fields. Here, we report on experiments in which a genuine quantum state of an entangled photon pair was exposed to a series of different accelerations. We measure an entanglement witness for $g$ values ranging from 30 mg to up to 30 g - under free-fall as well on a spinning centrifuge - and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. Our work represents the first quantum optics experiment in which entanglement is systematically tested in geodesic motion as well as in accelerated reference frames with acceleration a>>g = 9.81 m/s^2.

قيم البحث

اقرأ أيضاً

Simply and reliably detecting and quantifying entanglement outside laboratory conditions will be essential for future quantum information technologies. Here we address this issue by proposing a method for generating expressions which can perform this task between two parties who do not share a common reference frame. These reference frame independent expressions only require simple local measurements, which allows us to experimentally test them using an off-the-shelf entangled photon source. We show that the values of these expressions provide bounds on the concurrence of the state, and demonstrate experimentally that these bounds are more reliable than values obtained from state tomography since characterizing experimental errors is easier in our setting. Furthermore, we apply this idea to other quantities, such as the Renyi and von Neumann entropies, which are also more reliably calculated directly from the raw data than from a tomographically reconstructed state. This highlights the relevance of our approach for practical quantum information applications that require entanglement.
We investigate the entanglement measures of tripartite W-State and GHZ-state in noninertial frame through the coordinate transformation between Minkowski and Rindler. First it is shown that all three qubits undergo in a uniform acceleration $a$ of W- State, we find that the one-tangle, two-tangle, and $pi$-tangle decrease when the acceleration parameter $r$ increases, and the two-tangle cannot arrive to infinity of the acceleration. Next we show that the one qubit goes in a uniform acceleration $a_{1}$ and the other two undergo in a uniform acceleration $a$ of GHZ-state, we find that the two-tangle is equal to zero and $N_{B_I (A_I C_I)} = N_{C_I (A_I B_I)} eq N_{A_I (B_I C_I)}$, but one-tangle and $pi$-tangle never reduce to zero for any acceleration.
Non-classical correlations arising in complex quantum networks are attracting growing interest, both from a fundamental perspective and for potential applications in information processing. In particular, in an entanglement swapping scenario a new ki nd of correlations arise, the so-called nonbilocal correlations that are incompatible with local realism augmented with the assumption that the sources of states used in the experiment are independent. In practice, however, bilocality tests impose strict constraints on the experimental setup and in particular to presence of shared reference frames between the parties. Here, we experimentally address this point showing that false positive nonbilocal quantum correlations can be observed even though the sources of states are independent. To overcome this problem, we propose and demonstrate a new scheme for the violation of bilocality that does not require shared reference frames and thus constitute an important building block for future investigations of quantum correlations in complex networks.
We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarizatio n noise in the paths of the generated photons we prepare mixed entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.
The paper reports on experimental diagnostics of entanglement swapping protocol by means of collective entanglement witness. Our approach is suitable to detect disturbances occurring in the preparation of quantum states, quantum communication channel and imperfect Bell-state projection. More specifically we demonstrate that our method can distinguish disturbances such as depolarization, phase-damping, amplitude-damping and imperfect Bell-state measurement by observing four probabilities and estimating collective entanglement witness. Since entanglement swapping is a key procedure for quantum repeaters, quantum relays, device-independent quantum communications or entanglement assisted error correction, this can aid in faster and practical resolution of quality-of-transmission related problems as our approach requires less measurements then other means of diagnostics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا