ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental generation of complex noisy photonic entanglement

176   0   0.0 ( 0 )
 نشر من قبل Konrad Banaszek
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.



قيم البحث

اقرأ أيضاً

The quantization of the electromagnetic field has successfully paved the way for the development of the Standard Model of Particle Physics and has established the basis for quantum technologies. Gravity, however, continues to hold out against physici sts efforts of including it into the framework of quantum theory. Experimental techniques in quantum optics have only recently reached the precision and maturity required for the investigation of quantum systems under the influence of gravitational fields. Here, we report on experiments in which a genuine quantum state of an entangled photon pair was exposed to a series of different accelerations. We measure an entanglement witness for $g$ values ranging from 30 mg to up to 30 g - under free-fall as well on a spinning centrifuge - and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. Our work represents the first quantum optics experiment in which entanglement is systematically tested in geodesic motion as well as in accelerated reference frames with acceleration a>>g = 9.81 m/s^2.
We create independent, synchronized single-photon sources with built-in quantum memory based on two remote cold atomic ensembles. The synchronized single photons are used to demonstrate efficient generation of entanglement. The resulting entangled ph oton pairs violate a Bells Inequality by 5 standard deviations. Our synchronized single photons with their long coherence time of 25 ns and the efficient creation of entanglement serve as an ideal building block for scalable linear optical quantum information processing.
Photonic quantum networking relies on entanglement distribution between distant nodes, typically realized by swapping procedures. However, entanglement swapping is a demanding task in practice, mainly because of limited effectiveness of entangled pho ton sources and Bell-state measurements necessary to realize the process. Here we experimentally activate a remote distribution of two-photon polarization entanglement which supersedes the need for initial entangled pairs and traditional Bell-state measurements. This alternative procedure is accomplished thanks to the controlled spatial indistinguishability of four independent photons in three separated nodes of the network, which enables us to perform localized product-state measurements on the central node acting as a trigger. This experiment proves that the inherent indistinguishability of identical particles supplies new standards for feasible quantum communication in multinode photonic quantum networks.
We experimentally show how classical correlations can be turned into quantum entanglement, via the presence of non-unital local noise and the action of a CNOT gate. We first implement a simple two-qubit protocol in which entanglement production is no t possible in the absence of local non-unital noise, while entanglement arises with the introduction of noise, and is proportional to the degree of noisiness. We then perform a more elaborate four-qubit experiment, by employing two hyperentangled photons initially carrying only classical correlations. We demonstrate a scheme where the entanglement is generated via local non-unital noise, with the advantage to be robust against local unitaries performed by an adversary.
Entangled quantum states, such as N00N states, are of major importance for quantum technologies due to their quantum-enhanced performance. At the same time, their quantum correlations are relatively vulnerable when they are subjected to imperfections . Therefore, it is crucial to determine under which circumstances their distinct quantum features can be exploited. In this paper, we study the entanglement property of noisy N00N states. This class of states is a generalization of N00N states including various attenuation effects, such as mixing, constant or fluctuating losses, and dephasing. To verify their entanglement, we pursue two strategies: detection-based entanglement witnesses and entanglement quasiprobabilities. Both methods result from our solution of so-called separability eigenvalue equations. In particular, the entanglement quasiprobabilities allow for a full entanglement characterization. As examples of our general treatment, the cases of N00N states subjected to Gaussian dephasing and fluctuating atmospheric losses are explicitly studied. In any correlated fluctuating loss channel, entanglement is found to survive for non-zero transmissivity. In addition, an extension of our approach to multipartite systems is given, and the relation to the quantum-optical nonclassicality in phase-space is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا