ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud

128   0   0.0 ( 0 )
 نشر من قبل Mikako Matsuura
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mikako Matsuura




اسأل ChatGPT حول البحث

Using the PACS and SPIRE spectrometers on-board the Herschel Space Observatory, we obtained spectra of two red supergiants (RSGs) in the Large Magellanic Cloud (LMC). Multiple rotational CO emission lines (J=6-5 to 15-14) and 15 H2O lines were detected from IRAS 05280-6910, and one CO line was detected from WOH G64. This is the first time CO rotational lines have been detected from evolved stars in the LMC. Their CO line intensities are as strong as those of the Galactic RSG, VY CMa. Modelling the CO lines and the spectral energy distribution results in an estimated mass-loss rate for IRAS 05280-6910 of 3x10^-4 Msun per yr. The model assumes a gas-to-dust ratio and a CO-to-H2 abundance ratio is estimated from the Galactic values scaled by the LMC metallicity ([Fe/H]~-0.3), i.e., that the CO-to-dust ratio is constant for Galactic and LMC metallicities within the uncertainties of the model. The key factor determining the CO line intensities and the mass-loss rate found to be the stellar luminosity.

قيم البحث

اقرأ أيضاً

We report mid- to far-infrared imaging and photomety from 7 to 37 microns with SOFIA/FORCAST and 2 micron adaptive optics imaging with LBTI/LMIRCam of a large sample of red supergiants (RSGs) in four Galactic clusters; RSGC1, RSGC2=Stephenson 2, RSGC 3, and NGC 7419. The red supergiants in these clusters cover their expected range in luminosity and initial mass from approximately 9 to more than 25 Solar masses. The population includes examples of very late-type RSGs such as MY Cep which may be near the end of the RSG stage, high mass losing maser sources, yellow hypergiants and post-RSG candidates. Many of the stars and almost all of the most luminous have spectral energy distributions (SEDs) with extended infrared excess radiation at the longest wavelengths. To best model their SEDs we use DUSTY with a variable radial density distribution function to estimate their mass loss rates. Our mass loss rate -- luminosity relation for 42 RSGs basically follows the classical de Jager curve, but at luminosities below 10^5 Solar luminosities we find a significant population of red supergiants with mass loss rate below the de Jager relation. At luminosities above 10^5 Solar luminosities there is a rapid transition to higher mass loss rates that approximates and overlaps the de Jager curve. We recommend that instead of using a linear relation or single curve, the empirical mass loss rate -- luminosity relation is better represented by a broad band. Interestingly, the transition to much higher mass loss rates at about 10^5 Lsun corresponds approximately to an initial mass of 18 --20 Msun which is close to the upper limit for RSGs becoming Type II SNe.
We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC and AllWISE/NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 +- 1.6 msol, suggesting an initial mass well above 8~msol. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.
Mass loss is an important activity for red supergiants (RSGs) which can influence their evolution and final fate. Previous estimations of mass loss rates (MLRs) of RSGs exhibit significant dispersion due to the difference in method and the incomplete ness of sample. With the improved quality and depth of the surveys including the UKIRT/WFCAM observation in near infrared, LGGS and PS1 in optical, a rather complete sample of RSGs is identified in M31 and M33 according to their brightness and colors. For about 2000 objects in either galaxy from this ever largest sample, the MLR is derived by fitting the observational optical-to-mid infrared spectral energy distribution (SED) with the DUSTY code of a 1-D dust radiative transfer model. The average MLR of RSGs is found to be around $2.0times10^{-5}{text{M}_odot}/text{yr}$ with a gas-to-dust ratio of 100, which yields a total contribution to the interstellar dust by RSGs of about $1.1times10^{-3}{text{M}_odot}/text{yr}$ in M31 and $6.0 times10^{-4}{text{M}_odot}/text{yr}$ in M33, a non-negligible source in comparison with evolved low-mass stars. The MLRs are divided into three types by the dust properties, i.e. amorphous silicate, amorphous carbon and optically thin, and the relations of MLR with stellar parameters, infrared flux and colors are discussed and compared with previous works for the silicate and carbon dust group respectively.
Betelgeuse is one of the most magnificent stars in the sky, and one of the nearest red supergiants. Astronomers gathered in Paris in the Autumn of 2012 to decide what we know about its structure, behaviour, and past and future evolution, and how to p lace this in the general context of the class of red supergiants. Here I reflect on the discussions and propose a synthesis of the presented evidence. I believe that, in those four days, we have achieved to solve a few riddles.
100 - Emily M. Levesque 2013
Galaxies in the Local Group span a factor of 15 in metallicity, ranging from the super-solar M31 to the Wolf-Lundmark-Melotte (WLM) galaxy, which is the lowest-metallicity (0.1xZsun) Local Group galaxy currently forming stars. Studies of massive star populations across this broad range of environments have revealed important metallicity-dependent evolutionary trends, allowing us to test the accuracy of stellar evolutionary tracks at these metallicities for the first time. The RSG population is particularly valuable as a key mass-losing phase of moderately massive stars and a source of core-collapse supernova progenitors. By reviewing recent work on the RSG populations in the Local Group, we are able to quantify limits on these stars effective temperatures and masses and probe the relationship between RSG mass loss behaviors and host environments. Extragalactic surveys of RSGs have also revealed several unusual RSGs that display signs of unusual spectral variability and dust production, traits that may potentially also correlate with the stars host environments. I will present some of the latest work that has progressed our understanding of RSGs in the Local Group, and consider the many new questions posed by our ever-evolving picture of these stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا