ﻻ يوجد ملخص باللغة العربية
Betelgeuse is one of the most magnificent stars in the sky, and one of the nearest red supergiants. Astronomers gathered in Paris in the Autumn of 2012 to decide what we know about its structure, behaviour, and past and future evolution, and how to place this in the general context of the class of red supergiants. Here I reflect on the discussions and propose a synthesis of the presented evidence. I believe that, in those four days, we have achieved to solve a few riddles.
A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow
We first present spatially resolved ALMA and VLA continuum observations of the early-M red supergiant Antares to search for the presence of a chromosphere at radio wavelengths. We resolve the free-free emission of the Antares atmosphere at 11 unique
Yellow and red supergiants are evolved massive stars whose numbers and locations on the HR diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yello
Galaxies in the Local Group span a factor of 15 in metallicity, ranging from the super-solar M31 to the Wolf-Lundmark-Melotte (WLM) galaxy, which is the lowest-metallicity (0.1xZsun) Local Group galaxy currently forming stars. Studies of massive star
Red supergiants (RSGs) are a He-burning phase in the evolution of moderately massive stars (10-25 solar masses). For many years, the assumed physical properties of these stars placed them at odds with the predictions of evolutionary theory. We have r