ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation of Fe-based Superconductivity and Electron-Phonon Coupling in an FeAs/Oxide Heterostructure

81   0   0.0 ( 0 )
 نشر من قبل Jhinhwan Lee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the correlation between superconductivity and e-ph interaction with interfacial-phonons in an iron-based superconductor Sr$_2$VO$_3$FeAs ($T_c approx$ 33 K) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e-ph coupling locally modulated by O vacancies in VO$_2$ layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.

قيم البحث

اقرأ أيضاً

90 - Ge He , Yanli Jia , Xingyuan Hou 2016
Among hundreds of spinel oxides, LiTi2O4 (LTO) is the only one that exhibits superconductivity (Tc ~13 K). Although the general electron-phonon coupling is still the main mechanism for electron pairing in LTO, unconventional behaviors such as the ano malous magnetoresistance, anisotropic orbital/spin susceptibilities, etc. reveal that both the spin and the orbital interactions should also be considered for understanding the superconductivity. Here, we investigate tunneling spectra of [111]-, [110]- and [001]-oriented high quality LTO thin films. Several bosonic modes in tunneling spectra are observed in the [111]- and [110]-oriented films but not in [001]-oriented ones, and these modes still exist at T = 2Tc and beyond the upper critical field, which are confirmed as stemming from electron-phonon interaction by DFT calculations. These modes only appear in special surface orientations, indicating that the electron-phonon coupling in LTO system is highly anisotropic and may be enhanced by orbital-related state. The anisotropic electron-phonon coupling should be taken seriously in understanding the nature of LTO superconductivity.
We report on Raman scattering experiments of the undoped SrFe2As2 and superconducting Sr0.85K0.15Fe2As2 (Tc=28K) and Ba0.72K0.28Fe2As2 (Tc=32K) single crystals. The frequency and linewidth of the B1g mode at 210 cm-1 exhibits an appreciable temperatu re dependence induced by the superconducting and spin density wave transitions. We give estimates of the electron-phonon coupling related to this renormalization. In addition, we observe a pronounced quasi-elastic Raman response for the undoped compound, suggesting persisting magnetic fluctuations to low temperatures. In the superconducting state the renormalization of an electronic continuum is observed with a threshold energy of 61cm-1.
Phonon measurements in the A15-type superconductors were complicated in the past because of the unavailability of large single crystals for inelastic neutron scattering, e.g., in the case of Nb$_3$Sn, or unfavorable neutron scattering properties in t he case of V$_3$Si. Hence, only few studies of the lattice dynamical properties with momentum resolved methods were published, in particular below the superconducting transition temperature $T_c$. Here, we overcome these problems by employing inelastic x-ray scattering and report a combined experimental and theoretical investigation of lattice dynamics in V$_3$Si with the focus on the temperature-dependent properties of low-energy acoustic phonon modes in several high-symmetry directions. We paid particular attention to the evolution of the soft phonon mode of the structural phase transition observed in our sample at $T_s=18.9,rm{K}$, i.e., just above the measured superconducting phase transition at $T_c=16.8,rm{K}$. Theoretically, we predict lattice dynamics including electron-phonon coupling based on density-functional-perturbation theory and discuss the relevance of the soft phonon mode with regard to the value of $T_c$. Furthermore, we explain superconductivityinduced anomalies in the lineshape of several acoustic phonon modes using a model proposed by Allen et al., [Phys. Rev. B 56, 5552 (1997)].
High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconduct ivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.
We use ultrafast optical spectroscopy to study the nonequilibrium quasiparticle relaxation dynamics of the iron-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$ with $T_c=33.5$ K. Our results reveal an evident pseudogap ($Delta_{PG}$ = 2.4 $pm$ 0.1 meV) below $T^*approx 50$ K but prior to the opening of a superconducting gap ($Delta_{SC}$(0) $approx$ 4.3 $pm$ 0.1 meV). Measurements under high pump fluence real two distinct coherent phonon oscillations with frequencies of 1.95 and 5.51 THz, respectively. The high-frequency mode corresponds to the $c-$axis polarized vibrations of As atoms ($A_{1g}$ mode) with a nominal electron-phonon coupling constant $lambda_{A_{1g}}$ = 0.194 $pm$ 0.02. Below $T_c$, the temperature dependence of both frequency and damping rate of $A_{1g}$ mode clearly deviate from the description of optical phonon anharmonic effects. These results suggest that the pseudogap is very likely a precursor of superconductivity, and the electron-phonon coupling may play an essential role in the superconducting pairing in KCa$_2$Fe$_4$As$_4$F$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا