ﻻ يوجد ملخص باللغة العربية
The main aim of the study is to perform the long-term stability test of gain of the single mask triple GEM detector. A simple method is used for this long- term stability test using a radioactive X-ray source with high activity. The test is continued till accumulation of charge per unit area > 12.0 mC/mm2. The details of the chamber fabrication, the test set-up, the method of measurement and the test results are presented in this paper.
Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of $mu$m were measured on the GEM plane along with an energy re
A triple-GEM detector with two-dimensional readout is developed. The detector provides high position resolution for powder diffraction experiments at synchrotron radiation. Spatial resolution of the detector is measured in the lab using a 55Fe X-ray
Triple Gas Electron Multiplier (GEM) detectors will be used as a tracking device in the first two stations of CBM MUon CHamber (MUCH), where the maximum particle rate is expected to reach ~1 MHz/cm2 for central Au-Au collisions at 8 AGeV. Therefore,
The Phase-II high luminosity upgrade to the Large Hadron Collider (LHC) is planned for 2023, significantly increasing the collision rate and therefore the background rate, particularly in the high $eta$ region. To improve both the tracking and trigge
Gas detector are very light instrument used in high energy physics to measure the particle properties: position and momentum. Through high electric field is possible to use the Gas Electron Multiplier (GEM) technology to detect the charged particles