ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of a Triple-GEM Demonstrator in $pp$ Collisions at the CMS Detector

135   0   0.0 ( 0 )
 نشر من قبل Ian Watson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Phase-II high luminosity upgrade to the Large Hadron Collider (LHC) is planned for 2023, significantly increasing the collision rate and therefore the background rate, particularly in the high $eta$ region. To improve both the tracking and triggering of muons, the Compact Muon Solenoid (CMS) Collaboration plans to install triple-layer Gas Electron Multiplier (GEM) detectors in the CMS muon endcaps. Demonstrator GEM detectors were installed in CMS during 2017 to gain operational experience and perform a preliminary investigation of detector performance. We present the results of triple-GEM detector performance studies performed in situ during normal CMS and LHC operations in 2018. The distribution of cluster size and the efficiency to reconstruct high $p_T$ muons in proton--proton collisions are presented as well as the measurement of the environmental background rate to produce hits in the GEM detector.



قيم البحث

اقرأ أيضاً

An estimate of environmental background hit rate on triple-GEM chambers is performed using Monte Carlo (MC) simulation and compared to data taken by test chambers installed in the CMS experiment (GE1/1) during Run-2 at the Large Hadron Collider (LHC) . The hit rate is measured using data collected with proton-proton collisions at 13 TeV and a luminosity of 1.5$times10^{34}$ cm$^{-2}$ s$^{-1}$. The simulation framework uses a combination of the FLUKA and Geant4 packages to obtain the hit rate. FLUKA provides the radiation environment around the GE1/1 chambers, which is comprised of the particle flux with momentum direction and energy spectra ranging from $10^{-11}$ to $10^{4}$ MeV for neutrons, $10^{-3}$ to $10^{4}$ MeV for $gamma$s, $10^{-2}$ to $10^{4}$ MeV for $e^{pm}$, and $10^{-1}$ to $10^{4}$ MeV for charged hadrons. Geant4 provides an estimate of detector response (sensitivity) based on an accurate description of detector geometry, material composition and interaction of particles with the various detector layers. The MC simulated hit rate is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties of 10-14.5%. This simulation framework can be used to obtain a reliable estimate of background rates expected at the High Luminosity LHC.
Gaseous detectors are used in high energy physics as trackers or, more generally, as devices for the measurement of the particle position. For this reason, they must provide high spatial resolution and they have to be able to operate in regions of in tense radiation, i.e. around the interaction point of collider machines. Among these, Micro Pattern Gaseous Detectors (MPGD) are the latest frontier and allow to overcome many limitations of the pre-existing detectors, such as the radiation tolerance and the rate capability. The gas Electron Multiplier (GEM) is a MPGD that exploits an intense electric field in a reduced amplification region in order to prevent discharges. Several amplification stages, like in a triple-GEM, allow to increase the detector gain and to reduce the discharge probability. Reconstruction techniques such as charge centroid (CC) and micro-Time Projection Chamber ($upmu$TPC) are used to perform the position measurement. From literature triple-GEMs show a stable behaviour up to $10^8,$Hz/cm$^2$. A testbeam with four planar triple-GEMs has been performed at the Mainz Microtron (MAMI) facility and their performance was evaluated in different beam conditions. In this article a focus on the time performance for the $upmu$TPC clusterization is given and a new measurement of the triple-GEM limits at high rate will be presented.
Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of $mu$m were measured on the GEM plane along with an energy re solution of 20%$div$30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 $mu$m. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.
Performance of triple GEM prototypes in strong magnetic field has been evaluated bymeans of a muon beam at the H4 line of the SPS test area at CERN. Data have been reconstructedand analyzed offline with two reconstruction methods: the charge centroid and the micro-Time-Projection-Chamber exploiting the charge and the time measurement respectively. A combinationof the two reconstruction methods is capable to guarantee a spatial resolution better than 150{mu}min magnetic field up to a 1 T.
The performance of all subsystems of the CMS muon detector has been studied by using a sample of proton--proton collision data at sqrt(s) = 7 TeV collected at the LHC in 2010 that corresponds to an integrated luminosity of approximately 40 inverse pi cobarns. The measured distributions of the major operational parameters of the drift tube (DT), cathode strip chamber (CSC), and resistive plate chamber (RPC) systems met the design specifications. The spatial resolution per chamber was 80-120 micrometers in the DTs, 40-150 micrometers in the CSCs, and 0.8-1.2 centimeters in the RPCs. The time resolution achievable was 3 ns or better per chamber for all 3 systems. The efficiency for reconstructing hits and track segments originating from muons traversing the muon chambers was in the range 95-98%. The CSC and DT systems provided muon track segments for the CMS trigger with over 96% efficiency, and identified the correct triggering bunch crossing in over 99.5% of such events. The measured performance is well reproduced by Monte Carlo simulation of the muon system down to the level of individual channel response. The results confirm the high efficiency of the muon system, the robustness of the design against hardware failures, and its effectiveness in the discrimination of backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا