ترغب بنشر مسار تعليمي؟ اضغط هنا

Network analysis method: correlation values between two arbitrary points on a network

207   0   0.0 ( 0 )
 نشر من قبل Akira Saito
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Akira Saito




اسأل ChatGPT حول البحث

This study presents a generalization for a method examining the correlation function of an arbitrary system with interactions in an Ising model to obtain a value of correlation between two arbitrary points on a network. The establishment of a network clarifies the type of calculations necessary for the correlation values between secondary and tertiary nodes. Moreover, it is possible to calculate the correlation values of the target that are interlinked in a complex manner by proposing a network analysis method to express the same as a network with mutual linkages between the target of each field.


قيم البحث

اقرأ أيضاً

The topic of object detection has been largely improved recently, especially with the development of convolutional neural network. However, there still exist a lot of challenging cases, such as small object, compact and dense or highly overlapping ob ject. Existing methods can detect multiple objects wonderfully, but because of the slight changes between frames, the detection effect of the model will become unstable, the detection results may result in dropping or increasing the object. In the pedestrian flow detection task, such phenomenon can not accurately calculate the flow. To solve this problem, in this paper, we describe the new function for real-time multi-object detection in sports competition and pedestrians flow detection in public based on deep learning. Our work is to extract a video clip and solve this frame of clips efficiently. More specfically, our algorithm includes two stages: judge method and optimization method. The judge can set a maximum threshold for better results under the model, the threshold value corresponds to the upper limit of the algorithm with better detection results. The optimization method to solve detection jitter problem. Because of the occurrence of frame hopping in the video, and it will result in the generation of video fragments discontinuity. We use optimization algorithm to get the key value, and then the detection result value of index is replaced by key value to stabilize the change of detection result sequence. Based on the proposed algorithm, we adopt wanfang sports competition dataset as the main test dataset and our own test dataset for YOLOv3-Abnormal Number Version(YOLOv3-ANV), which is 5.4% average improvement compared with existing methods. Also, video above the threshold value can be obtained for further analysis. Spontaneously, our work also can used for pedestrians flow detection and pedestrian alarm tasks.
Given $n$ pairs of points, $mathcal{S} = {{p_1, q_1}, {p_2, q_2}, dots, {p_n, q_n}}$, in some metric space, we study the problem of two-coloring the points within each pair, red and blue, to optimize the cost of a pair of node-disjoint networks, one over the red points and one over the blue points. In this paper we consider our network structures to be spanning trees, traveling salesman tours or matchings. We consider several different weight functions computed over the network structures induced, as well as several different objective functions. We show that some of these problems are NP-hard, and provide constant factor approximation algorithms in all cases.
We propose a novel method to perform plenoptic imaging at the diffraction limit by measuring second-order correlations of light between two reference planes, arbitrarily chosen, within the tridimensional scene of interest. We show that for both chaot ic light and entangled-photon illumination, the protocol enables to change the focused planes, in post-processing, and to achieve an unprecedented combination of image resolution and depth of field. In particular, the depth of field results larger by a factor 3 with respect to previous correlation plenoptic imaging protocols, and by an order of magnitude with respect to standard imaging, while the resolution is kept at the diffraction limit. The results lead the way towards the development of compact designs for correlation plenoptic imaging devices based on chaotic light, as well as high-SNR plenoptic imaging devices based on entangled photon illumination, thus contributing to make correlation plenoptic imaging effectively competitive with commercial plenoptic devices.
54 - Alexander Jung 2019
Many applications generate data with an intrinsic network structure such as time series data, image data or social network data. The network Lasso (nLasso) has been proposed recently as a method for joint clustering and optimization of machine learni ng models for networked data. The nLasso extends the Lasso from sparse linear models to clustered graph signals. This paper explores the duality of nLasso and network flow optimization. We show that, in a very precise sense, nLasso is equivalent to a minimum-cost flow problem on the data network structure. Our main technical result is a concise characterization of nLasso solutions via existence of certain network flows. The main conceptual result is a useful link between nLasso methods and basic graph algorithms such as clustering or maximum flow.
Cortical pyramidal neurons receive inputs from multiple distinct neural populations and integrate these inputs in separate dendritic compartments. We explore the possibility that cortical microcircuits implement Canonical Correlation Analysis (CCA), an unsupervised learning method that projects the inputs onto a common subspace so as to maximize the correlations between the projections. To this end, we seek a multi-channel CCA algorithm that can be implemented in a biologically plausible neural network. For biological plausibility, we require that the network operates in the online setting and its synaptic update rules are local. Starting from a novel CCA objective function, we derive an online optimization algorithm whose optimization steps can be implemented in a single-layer neural network with multi-compartmental neurons and local non-Hebbian learning rules. We also derive an extension of our online CCA algorithm with adaptive output rank and output whitening. Interestingly, the extension maps onto a neural network whose neural architecture and synaptic updates resemble neural circuitry and synaptic plasticity observed experimentally in cortical pyramidal neurons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا