ترغب بنشر مسار تعليمي؟ اضغط هنا

Network Optimization on Partitioned Pairs of Points

132   0   0.0 ( 0 )
 نشر من قبل Tyler Mayer
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given $n$ pairs of points, $mathcal{S} = {{p_1, q_1}, {p_2, q_2}, dots, {p_n, q_n}}$, in some metric space, we study the problem of two-coloring the points within each pair, red and blue, to optimize the cost of a pair of node-disjoint networks, one over the red points and one over the blue points. In this paper we consider our network structures to be spanning trees, traveling salesman tours or matchings. We consider several different weight functions computed over the network structures induced, as well as several different objective functions. We show that some of these problems are NP-hard, and provide constant factor approximation algorithms in all cases.



قيم البحث

اقرأ أيضاً

We analyze a directed variation of the book embedding problem when the page partition is prespecified and the nodes on the spine must be in topological order (upward book embedding). Given a directed acyclic graph and a partition of its edges into $k $ pages, can we linearly order the vertices such that the drawing is upward (a topological sort) and each page avoids crossings? We prove that the problem is NP-complete for $kge 3$, and for $kge 4$ even in the special case when each page is a matching. By contrast, the problem can be solved in linear time for $k=2$ pages when pages are restricted to matchings. The problem comes from Jack Edmonds (1997), motivated as a generalization of the map folding problem from computational origami.
We study four classical graph problems -- Hamiltonian path, Traveling salesman, Minimum spanning tree, and Minimum perfect matching on geometric graphs induced by bichromatic (red and blue) points. These problems have been widely studied for points i n the Euclidean plane, and many of them are NP-hard. In this work, we consider these problems in two restricted settings: (i) collinear points and (ii) equidistant points on a circle. We show that almost all of these problems can be solved in linear time in these constrained, yet non-trivial settings.
125 - Jireh Huang , Qing Zhou 2021
We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS), composed of three distinct yet compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-con quer strategy, $p$-value adjacency thresholding (PATH) effectively accomplishes parameter tuning with a single execution, and hybrid greedy initialization (HGI) maximally utilizes constraint-based information to obtain a high-scoring and well-performing initial graph for greedy search. We establish structure learning consistency of our algorithms in the large-sample limit, and empirically validate our methods individually and collectively through extensive numerical comparisons. The combined merits of pPC and PATH achieve significant computational reductions compared to the PC algorithm without sacrificing the accuracy of estimated structures, and our generally applicable HGI strategy reliably improves the estimation structural accuracy of popular hybrid algorithms with negligible additional computational expense. Our empirical results demonstrate the superior empirical performance of pHGS against many state-of-the-art structure learning algorithms.
An extension of the restricted Delaunay-refinement algorithm for surface mesh generation is described, where a new point-placement scheme is introduced to improve element quality in the presence of mesh size constraints. Specifically, it is shown tha t the use of off-centre Steiner points, positioned on the faces of the associated Voronoi diagram, typically leads to significant improvements in the shape- and size-quality of the resulting surface tessellations. The new algorithm can be viewed as a Frontal-Delaunay approach -- a hybridisation of conventional Delaunay-refinement and advancing-front techniques in which new vertices are positioned to satisfy both element size and shape constraints. The performance of the new scheme is investigated experimentally via a series of comparative studies that contrast its performance with that of a typical Delaunay-refinement technique. It is shown that the new method inherits many of the best features of classical Delaunay-refinement and advancing-front type methods, leading to the construction of smooth, high quality surface triangulations with bounded radius-edge ratios and convergence guarantees. Experiments are conducted using a range of complex benchmarks, verifying the robustness and practical performance of the proposed scheme.
390 - Pierre Gillibert 2008
For a class V of algebras, denote by Conc(V) the class of all semilattices isomorphic to the semilattice Conc(A) of all compact congruences of A, for some A in V. For classes V1 and V2 of algebras, we denote by crit(V1,V2) the smallest cardinality of a semilattice in Conc(V1) which is not in Conc(V2) if it exists, infinity otherwise. We prove a general theorem, with categorical flavor, that implies that for all finitely generated congruence-distributive varieties V1 and V2, crit(V1,V2) is either finite, or aleph_n for some natural number n, or infinity. We also find two finitely generated modular lattice varieties V1 and V2 such that crit(V1,V2)=aleph_1, thus answering a question by J. Tuma and F. Wehrung.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا