ترغب بنشر مسار تعليمي؟ اضغط هنا

The two-loop electroweak bosonic corrections to $sin^2theta_{rm eff}^{rm b}$

100   0   0.0 ( 0 )
 نشر من قبل Ayres Freitas
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The prediction of the effective electroweak mixing angle $sin^2theta_{rm eff}^{rm b}$ in the Standard Model at two-loop accuracy has now been completed by the first calculation of the bosonic two-loop corrections to the $Z{bar b}b$ vertex. Numerical predictions are presented in the form of a fitting formula as function of $M_Z, M_W, M_H, m_t$ and $Delta{alpha}$, ${alpha_{rm s}}$. For central input values, we obtain a relative correction of $Deltakappa_{rm b}^{(alpha^2,rm bos)} = -0.9855 times 10^{-4}$, amounting to about a quarter of the fermionic corrections, and corresponding to $sin^2theta_{rm eff}^{rm b} = 0.232704$. The integration of the corresponding two-loop vertex Feynman integrals with up to three dimensionless parameters in Minkowskian kinematics has been performed with two approaches: (i) Sector decomposition, implemented in the packages FIESTA 3 and SecDec 3, and (ii) Mellin-Barnes representations, implemented in AMBRE 3/MB and the new package MBnumerics.



قيم البحث

اقرأ أيضاً

We present the first calculation of the two-loop electroweak fermionic correction to the flavour-dependent effective weak-mixing angle for bottom quarks, sin^2 theta_{eff}^{b anti-b}. For the evaluation of the missing two-loop vertex diagrams, two me thods are employed, one based on a semi-numerical Bernstein-Tkachov algorithm and the second on asymptotic expansions in the large top-quark mass. A third method based on dispersion relations is used for checking the basic loop integrals. We find that for small Higgs-boson mass values, M_H ~ 100 GeV, the correction is sizable, of order O(10^{-4}).
If neutrinos are Dirac particles the existence of light right-handed neutrinos $ u_{R}$ is implied. Those would contribute to the effective number of relativistic neutrino species $N_{{rm eff}}$ in the early Universe. With pure standard model interac tions, the contribution is negligibly small. In the presence of new interactions, however, the contribution could be significantly enhanced. We consider the most general effective four-fermion interactions for neutrinos (scalar, pseudo-scalar, vector, axial-vector and tensor), and compute the contribution of right-handed neutrinos to $N_{{rm eff}}$. Taking the Planck 2018 measurement of $N_{{rm eff}}$, strong constraints on the effective four-fermion coupling are obtained, corresponding to interaction strengths of $10^{-5}sim10^{-3}$ in units of the Fermi constant. This translates in new physics scales of up to 43 TeV and higher. Future experiments such as CMB-S4 can probe or exclude the existence of effective 4-neutrino operators for Dirac neutrinos. Ways to avoid this conclusion are discussed.
This article presents results for the last unknown two-loop contributions to the $Z$-boson partial widths and $Z$-peak cross-section. These are the so-called bosonic electroweak two-loop corrections, where bosonic refers to diagrams without closed fe rmion loops. Together with the corresponding results for the $Z$-pole asymmetries $A_l, A_b$, which have been presented earlier, this completes the theoretical description of $Z$-boson precision observables at full two-loop precision within the Standard Model. The calculation has been achieved through a combination of different methods: (a) numerical integration of Mellin-Barnes representations with contour rotations and contour shifts to improve convergence; (b) sector decomposition with numerical integration over Feynman parameters; (c) dispersion relations for sub-loop insertions. Numerical results are presented in the form of simple parameterization formulae for the total width, $Gamma_{rm Z}$, partial decay widths $Gamma_{e,mu},Gamma_{tau},Gamma_{ u},Gamma_{u},Gamma_{c},Gamma_{d,s},Gamma_{b}$, branching ratios $R_l,R_c,R_b$ and the hadronic peak cross-section, $sigma_{rm had}^0$. Theoretical intrinsic uncertainties from missing higher orders are also discussed.
A new U(1) gauge symmetry is the simplest extension of the Standard Model and has various theoretical and phenomenological motivations. In this paper, we study the cosmological constraint on the MeV scale dark photon. After the neutrino decoupling er a at $T = mathcal{O}(1),$MeV, the decay and annihilation of the dark photon heats up the electron and photon plasma and accordingly decreases the effective number of neutrino $N_{mathrm{eff}}$ in the recombination era. We derive a conservative lower-limit of the dark photon mass around 8.5 MeV from the current Planck data if the mixing between the dark photon and ordinary photon is larger than $mathcal{O}(10^{-9})$. We also find that the future CMB stage-$rm I! V$ experiments can probe up to 17 MeV dark photon.
317 - Tadashi Ishikawa 2018
Numerical calculation of two-loop electroweak corrections to the muon anomalous magnetic moment ($g$-2) is done based on, on shell renormalization scheme (OS) and free quark model (FQM). The GRACE-FORM system is used to generate Feynman diagrams and corresponding amplitudes. Total 1780 two-loop diagrams and 70 one-loop diagrams composed of counter terms are calculated to get the renormalized quantity. As for the numerical calculation, we adopt trapezoidal rule with Double Exponential method (DE). Linear extrapolation method (LE) is introduced to regularize UV- and IR-divergences and to get finite values. The reliability of our result is guaranteed by several conditions. The sum of one and two loop electroweak corrections in this renormalization scheme becomes $a_mu^{EW:OS}[1{rm+}2{rm -loop}]= 151.2 (pm 1.0)times 10^{-11}$, where the error is due to the numerical integration and the uncertainty of input mass parameters and of the hadronic corrections to electroweak loops. By taking the hadronic corrections into account, we get $a_mu^{EW}[1{rm+}2 {rm -loop}]= 152.9 (pm 1.0)times 10^{-11}$. It is in agreement with the previous works given in PDG within errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا