ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of contact-line pinning on the adsorption of nonspherical colloids at liquid interfaces

106   0   0.0 ( 0 )
 نشر من قبل Anna Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of contact-line pinning are well-known in macroscopic systems, but are only just beginning to be explored at the microscale in colloidal suspensions. We use digital holography to capture the fast three-dimensional dynamics of micrometer-sized ellipsoids breaching an oil-water interface. We find that the particle angle varies approximately linearly with the height, in contrast to results from simulations based on minimization of the interfacial energy. Using a simple model of the motion of the contact line, we show that the observed coupling between translational and rotational degrees of freedom is likely due to contact-line pinning. We conclude that the dynamics of colloidal particles adsorbing to a liquid interface are not determined by minimization of interfacial energy and viscous dissipation alone; contact-line pinning dictates both the timescale and pathway to equilibrium.

قيم البحث

اقرأ أيضاً

We construct a mean-field formulation of the thermodynamics of ion solvation in immiscible polar binary mixtures. Assuming an equilibrium planar interface separating two semi-infinite regions of different constant dielectric medium, we study the elec trostatic phenomenon of differential adsorption of ions at the interface. Using general thermodynamic considerations, we construct the mean-field $Omega$-potential and demonstrate the spontaneous formation of an electric double-layer around the interface necessarily follow. In our framework, we can also relate both the bulk ion densities in the two phases and the distribution potential across the interface to the fundamental Born free energy of ion polarization. We further illustrate this selective ion adsorption phenomenon in respective examples of fully permeable membranes that are neutral, negative, or positive in charge polarity.
We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical bind ing. We show that the flow-induced force on the colloids can be described as the gradient of a potential. The nonequilibrium steady state due to local heating thus admits an effective equilibrium description. The optofluidic manipulation explored in this work opens novel ways to manipulate and assemble colloidal particles
The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesosc opic numerical approach which relies on an approximated numerical solution of the Navier-Stokes equation, we show that when adsorbed at a fluid interface, an active colloid experiences a net torque even in the absence of a viscosity contrast between the two adjacent fluids. In particular, we study the dependence of this torque on the contact angle of the colloid with the fluid-fluid interface and on its surface properties. We rationalize our results via an approximate approach which accounts for the appearance of a local friction coefficient. By providing insight into the dynamics of active colloids adsorbed at fluid interfaces, our results are relevant for two-dimensional self assembly and emulsion stabilization by means of active colloids.
The active motion of phoretic colloids leads them to accumulate at boundaries and interfaces. Such an excess accumulation, with respect to their passive counterparts, makes the dynamics of phoretic colloids particularly sensitive to the presence of b oundaries and pave new routes to externally control their single particle as well as collective behavior. Here we review some recent theoretical results about the dynamics of phoretic colloids close to and adsorbed at fluid interfaces in particular highlighting similarities and differences with respect to solid-fluid interfaces.
By employing monomer-resolved computer simulations and analytical considerations based on polymer scaling theory, we analyze the conformations and interactions of multiarm star polymers strongly adsorbed on a smooth, two-dimensional plane. We find a stronger stretching of the arms as well as a stronger repulsive, effective interaction than in the three dimensional case. In particular, the star size scales with the number of arms $f$ as $sim f^{1/4}$ and the effective interaction as $sim f^{2}$, as opposed to $sim f^{1/5}$ and $sim f^{3/2}$, respectively, in three dimensions. Our results demonstrate the dramatic effect that geometric confinement can have on the effective interactions and the subsequent correlations of soft colloids in general, for which the conformation can be altered as a result of geometrical constraints imposed on them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا