ترغب بنشر مسار تعليمي؟ اضغط هنا

Triangulum galaxy viewed by Planck

135   0   0.0 ( 0 )
 نشر من قبل Francesco De Paolis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We used Planck data to study the M33 galaxy and find a substantial temperature asymmetry with respect to its minor axis projected onto the sky plane. This temperature asymmetry correlates well with the HI velocity field at 21 cm, at least within a galactocentric distance of 0.5 degree, and it is found to extend up to about 3 degrees from the galaxy center. We conclude that the revealed effect, that is, the temperature asymmetry and its extension, implies that we detected the differential rotation of the M33 galaxy and of its extended baryonic halo.


قيم البحث

اقرأ أيضاً

The Andromeda Galaxy (M31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M31 in all of its frequency bands, and has mapped out the dust emission with the High Frequenc y Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M31. We find that dust dominating the longer wavelength emission ($gtrsim 0.3,$mm) is heated by the diffuse stellar population (as traced by 3.6$,mu$m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24$,mu$m emission). We also fit spectral energy distributions (SEDs) for individual 5 pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22$,$K in the nucleus to 14$,$K outside of the 10$,$kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of ($18.2pm1.0$)$,$K with a spectral index of $1.62pm0.11$ (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60$,$GHz, which corresponds to a star formation rate of around $0.12$M$_odot,$yr$^{-1}$. We find a $2.3,sigma$ detection of the presence of spinning dust emission, with a 30$,$GHz amplitude of $0.7pm0.3,$Jy, which is in line with expectations from our Galaxy.
The stellar halos of large galaxies represent a vital probe of the processes of galaxy evolution. They are the remnants of the initial bouts of star formation during the collapse of the proto-galactic cloud, coupled with imprint of ancient and on-goi ng accretion events. Previously, we have reported the tentative detection of a possible, faint, extended stellar halo in the Local Group spiral, the Triangulum Galaxy (M33). However, the presence of substructure surrounding M33 made interpretation of this feature difficult. Here, we employ the final data set from the Pan-Andromeda Archaeological Survey (PAndAS), combined with an improved calibration and a newly derived contamination model for the region to revisit this claim. With an array of new fitting algorithms, fully accounting for contamination and the substantial substructure beyond the prominent stellar disk in M33, we reanalyse the surrounds to separate the signal of the stellar halo and the outer halo substructure. Using more robust search algorithms, we do not detect a large scale smooth stellar halo and place a limit on the maximum surface brightness of such a feature of ${mu}_V$ = 35.5 mags per square arcsec, or a total halo luminosity of $L < 10^6L_{odot}$.
219 - Evan N. Kirby 2015
Laevens et al. recently discovered Triangulum II, a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 L_sun. Using Keck/DEIMOS, we measured the radial velocities of six member stars within 1.2 of the ce nter of Triangulum II, and we found a velocity dispersion of sigma_v = 5.1 -1.4 +4.0 km/s. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Triangulum II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center (v_GSR = -262 km/s). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption in our data set. The ellipticity is low, and the mean velocity, <v_helio> = -382.1 +/- 2.9 km/s, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey (PAndAS) stellar stream. If Triangulum II is in dynamical equilibrium, then it would have a mass-to-light ratio of 3600 -2100 +3500 M_sun/L_sun, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3-D half-light radius would be 4.8 -3.5 +8.1 M_sun/pc^3, even higher than Segue 1. Hence, Triangulum II is an excellent candidate for the indirect detection of dark matter annihilation.
We present new spectra obtained using Keck/KCWI and perform kinematics and stellar population analyses of the shell galaxy NGC 474, from both the galaxy centre and a region from the outer shell. We show that both regions have similarly extended star formation histories although with different stellar population properties. The central region of NGC 474 is dominated by intermediate-aged stars (8.3 pm 0.3 Gyr) with subsolar metallicity ([Z/H]= -0.24 pm 0.07 dex) while the observed shell region, which hosts a substantial population of younger stars, has a mean luminosity-weighted age of 4.0 pm 0.5 Gyr with solar metallicities ([Z/H]=-0.03 pm 0.09 dex). Our results are consistent with a scenario in which NGC 474 experienced a major to intermediate merger with a log((M_*/M_odot)sim10 ) mass satellite galaxy at least sim 2 Gyr ago which produced its shell system. This work shows that the direct spectroscopic study of low-surface brightness stellar features, such as shells, is now feasible and opens up a new window to understanding galaxy formation and evolution.
203 - S. Komugi , T. Tosaki , K. Kohno 2011
We present wide-field 1.1 mm continuum imaging of the nearby spiral galaxy M 33, conducted with the AzTEC bolometer camera on ASTE. We show that the 1.1 mm flux traces the distribution of dust with T ~20 K. Combined with far-infrared imaging at 160um , we derive the dust temperature distribution out to a galactic radius of ~7 kpc with a spatial resolution of ~100 parsecs. Although the 1.1 mm flux is observed predominantly near star forming regions, we find a smooth radial temperature gradient declining from ~20 K to ~13 K, consistent with recent results from the Herschel satellite. Further comparison of individual regions show a strong correlation between the cold dust temperature and the Ks band brightness, but not with the ionizing flux. The observed results imply that the dominant heating source of cold dust at few hundred parsec scales are due to the non-OB stars, even when associated with star forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا