ﻻ يوجد ملخص باللغة العربية
An extreme magnetoresistance (XMR) has recently been observed in several non-magnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Here, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb.
We report extremely large positive magnetoresistance of 1.72 million percent in single crystal TaSb$_{2}$ at moderate conditions of 1.5 K and 15 T. The quadratic growth of magnetoresistance (MR $propto,B^{1.96}$) is not saturating up to 15 T, a manif
The resistance of a metal in a magnetic field can be very illuminating about its ground state. Some famous examples include the integer and fractional quantum Hall effectscite{Klitzing-QHE,Tsui-FQHE}, Shubnikov-de Haas oscillationscite{SdH}, and weak
We introduce a spectral density functional theory which can be used to compute energetics and spectra of real strongly--correlated materials using methods, algorithms and computer programs of the electronic structure theory of solids. The approach co
While in strongly correlated materials one often focuses on local electronic correlations, the influence of non-local exchange and correlation effects beyond band-theory can be pertinent in systems with more extended orbitals. Thus in many compounds
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method ar