ﻻ يوجد ملخص باللغة العربية
CMOS Monolithic Active Pixel Sensors (MAPS) were chosen as sensor technology for the vertex detectors of STAR, CBM and the upgraded ALICE-ITS. They also constitute a valuable option for tracking devices at future e+e- colliders. Those applications require a substantial tolerance to both, ionizing and non-ionizing radiation. To allow for a focused optimization of the radiation tolerance, prototypes are tested by irradiating the devices either with purely ionizing radiation (e.g. soft X-rays) or the most pure sources of non-ionizing radiation available (e.g. reactor neutrons). In the second case, it is typically assumed that the impact of the parasitic $gamma$-rays found in the neutron beams is negligible. We checked this assumption by irradiating MAPS with $gamma$-rays and comparing the radiation damage generated with the one in neutron irradiated sensors. We conclude that the parasitic radiation doses may cause non-negligible radiation damage. Based on the results we propose a procedure to recognize and to suppress the effect of the related parasitic ionizing radiation damage.
- Paper withdrawn by the author - CMOS Monolithic Active Pixel Sensors for charged particle tracking are considered as technology for numerous experiments in heavy ion and particle physics. To match the requirements for those applications in terms of
CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias
CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the t
Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas
The ATLAS experiment at the LHC will replace its current inner tracker system for the HL-LHC era. 3D silicon pixel sensors are being considered as radiation-hard candidates for the innermost layers of the new fully silicon-based tracking detector. 3D