ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of Irradiated RD53A 3D Pixel Sensors

134   0   0.0 ( 0 )
 نشر من قبل Stefano Terzo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ATLAS experiment at the LHC will replace its current inner tracker system for the HL-LHC era. 3D silicon pixel sensors are being considered as radiation-hard candidates for the innermost layers of the new fully silicon-based tracking detector. 3D sensors with a small pixel size of $mathrm{50 times 50~mu m^{2}}$ and $mathrm{25 times 100~mu m^{2}}$ compatible with the first prototype ASIC for the HL-LHC, the RD53A chip, have been studied in beam tests after uniform irradiation to $mathrm{5 times 10^{15}~n_{eq}/cm^{2}}$. An operation voltage of only 50 V is needed to achieve a 97% hit efficiency after this fluence.



قيم البحث

اقرأ أيضاً

158 - M. Bomben 2013
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology i s a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, a complete overview of the electrical characterization of several irradiated samples will be discussed. Some comments about detector modules being assembled will be made and eventually some plans will be outlined.
105 - Marco Bomben 2017
To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive are a at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit-efficiency also at the detector edge, even in presence of guard rings.
In this paper we discuss the measurement of charge collection in irradiated silicon pixel sensors and the comparison with a detailed simulation. The simulation implements a model of radiation damage by including two defect levels with opposite charge states and trapping of charge carriers. The modeling proves that a doubly peaked electric field generated by the two defect levels is necessary to describe the data and excludes a description based on acceptor defects uniformly distributed across the sensor bulk. In addition, the dependence of trap concentrations upon fluence is established by comparing the measured and simulated profiles at several fluences and bias voltages.
93 - M. Wagner , A.Gisen , M. Hotting 2019
Planar silicon pixel sensors with modified n$^+$-implantation shapes based on the IBL pixel sensor were designed in Dortmund. The sensors with a pixel size of $250,mu$m $times$ $50,mu$m are produced in n$^+$-in-n sensor technology. The charge colle ction efficiency should improve with electrical field strength maxima created by the different n$^+$-implantation shapes. Therefore, higher particle detection efficiencies at lower bias voltages could be achieved. The modified pixel designs and the IBL standard design are placed on one sensor to test and compare the designs. The sensor can be read out with the FE-I4 readout chip. At the iWoRiD 2018, measurements of sensors irradiated with protons and neutrons respectively at different facilities were presented and showed incongruent results. Unintended annealing during irradiation was considered as an explanation for the observed differences in the hit detection efficiency for two neutron irradiated sensors. This hypothesis will be examined and confirmed in this work, presenting first annealing studies of sensors irradiated with neutrons in Ljubljana.
113 - M. Bubna , E. Alagoz , A. Krzywda 2014
The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminos ity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا