ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal spatiotemporal dynamics of spontaneous superfluidity breakdown in the presence of synthetic gauge fields

135   0   0.0 ( 0 )
 نشر من قبل Chaohong Lee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

According to the famous Kibble-Zurek mechanism (KZM), the universality of spontaneous defect generation in continuous phase transitions (CPTs) can be understood by the critical slowing down. In most CPTs of atomic Bose-Einstein condensates (BECs), the universality of spontaneous defect generations has been explained by the divergent relaxation time associated with the nontrivial gapless Bogoliubov excitations. However, for atomic BECs in synthetic gauge fields, their spontaneous superfluidity breakdown is resulted from the divergent correlation length associated with the zero Landau critical velocity. Here, by considering an atomic BEC ladder subjected to a synthetic magnetic field, we reveal that the spontaneous superfluidity breakdown obeys the KZM. The Kibble-Zurek scalings are derived from the Landau critical velocity which determines the correlation length. In further, the critical exponents are numerically extracted from the critical spatial-temporal dynamics of the bifurcation delay and the spontaneous vortex generation. Our study provides a general way to explore and understand the spontaneous superfluidity breakdown in CPTs from a single-well dispersion to a double-well one, such as, BECs in synthetic gauge fields, spin-orbit coupled BECs, and BECs in shaken optical lattices.

قيم البحث

اقرأ أيضاً

We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low energy atomic collisions, whic h are short ranged in real space, relate to nearly infinite-ranged interactions in momentum space. However, the added exchange energy between atoms in distinguishable momentum states leads to an effectively attractive, finite-ranged interaction in momentum space. In this work, we observe the onset of self-trapping driven by such interactions in a momentum-space double well, paving the way for more complex many-body studies in tailored MSLs. We consider the types of phenomena that may result from these interactions, including the formation of chiral solitons in topological zigzag lattices.
We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behaviour , both of which are characterised by universal scaling laws linking the particle-loss rate to the total atom number $N$. In the degenerate and thermal regimes the per-particle loss rate is $propto N^{2/3}$ and $N^{26/9}$, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
Understanding strongly correlated phases of matter, from the quark-gluon plasma to neutron stars, and in particular the dynamics of such systems, $e.g.$ following a Hamiltonian quench, poses a fundamental challenge in modern physics. Ultracold atomic gases are excellent quantum simulators for these problems, thanks to tuneable interparticle interactions and experimentally resolvable intrinsic timescales. In particular, they give access to the unitary regime where the interactions are as strong as allowed by quantum mechanics. Following years of experiments on unitary Fermi gases, unitary Bose gases have recently emerged as a new experimental frontier. They promise exciting new possibilities, including universal physics solely controlled by the gas density and novel forms of superfluidity. Here, through momentum- and time-resolved studies, we explore both degenerate and thermal homogeneous Bose gases quenched to unitarity. In degenerate samples we observe universal post-quench dynamics in agreement with the emergence of a prethermal state with a universal nonzero condensed fraction. In thermal gases, dynamic and thermodynamic properties generically depend on both the gas density $n$ and temperature $T$, but we find that they can still be expressed in terms of universal dimensionless functions. Surprisingly, the total quench-induced correlation energy is independent of the gas temperature. Our measurements provide quantitative benchmarks and new challenges for theoretical understanding.
Magnetic monopoles --- particles that behave as isolated north or south magnetic poles --- have been the subject of speculation since the first detailed observations of magnetism several hundred years ago. Numerous theoretical investigations and hith erto unsuccessful experimental searches have followed Diracs 1931 development of a theory of monopoles consistent with both quantum mechanics and the gauge invariance of the electromagnetic field. The existence of even a single Dirac magnetic monopole would have far-reaching physical consequences, most famously explaining the quantization of electric charge. Although analogues of magnetic monopoles have been found in exotic spin-ices and other systems, there has been no direct experimental observation of Dirac monopoles within a medium described by a quantum field, such as superfluid helium-3. Here we demonstrate the controlled creation of Dirac monopoles in the synthetic magnetic field produced by a spinor Bose-Einstein condensate. Monopoles are identified, in both experiments and matching numerical simulations, at the termini of vortex lines within the condensate. By directly imaging such a vortex line, the presence of a monopole may be discerned from the experimental data alone. These real-space images provide conclusive and long-awaited experimental evidence of the existence of Dirac monopoles. Our result provides an unprecedented opportunity to observe and manipulate these quantum-mechanical entities in a controlled environment.
Interactions between particles can be strongly altered by their environment. We demonstrate a technique for modifying interactions between ultracold atoms by dressing the bare atomic states with light, creating an effective interaction of vastly incr eased range that scatters states of finite relative angular momentum at collision energies where only s-wave scattering would normally be expected. We collided two optically dressed neutral atomic Bose-Einstein condensates with equal, and opposite, momenta and observed that the usual s-wave distribution of scattered atoms was altered by the appearance of d- and g-wave contributions. This technique is expected to enable quantum simulation of exotic systems, including those predicted to support Majorana fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا