ﻻ يوجد ملخص باللغة العربية
Upper bounds are derived on the amount of magnetic energy that can be generated by dynamo action in collisional and collisionless plasmas with and without external forcing. A hierarchy of mathematical descriptions is considered for the plasma dynamics: ideal MHD, visco-resistive MHD, the double-adiabatic theory of Chew, Goldberger and Low (CGL), kinetic MHD, and other kinetic models. It is found that dynamo action is greatly constrained in models where the magnetic moment of any particle species is conserved. In the absence of external forcing, the magnetic energy then remains small at all times if it is small in the initial state. In other words, a small seed magnetic field cannot be amplified significantly, regardless of the nature of flow, as long as the collision frequency and gyroradius are small enough to be negligible. A similar conclusion also holds if the system is subject to external forcing as long as this forcing conserves the magnetic moment of at least one plasma species and does not greatly increase the total energy of the plasma (i.e., in practice, is subsonic). Dynamo action therefore always requires collisions or some small-scale kinetic mechanism for breaking the adiabatic invariance of the magnetic moment.
Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earths ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take pl
We perform fully kinetic simulations of flows known to produce dynamo in magnetohydrodynamics (MHD), considering scenarios with low Reynolds number and high magnetic Prandtl number, relevant for galaxy cluster scale fluctuation dynamos. We find that
We present results from numerical simulations of nonlinear MHD dynamo action produced by three-dimensional flows that become turbulent for high values of the fluid Reynolds number. The magnitude of the forcing function driving the flow is allowed to
In the quiet Sun, magnetic fields are usually observed as small-scale magnetic elements, `salt and pepper, covering the entire solar surface. By using 3D radiative MHD numerical simulations we demonstrate that these fields are a result of local dynam
The nonlinear propagation of electron-acoustic solitary structures is investigated in a plasma containing kappa-distributed (superthermal) electrons. Different types of localized structures are shown to exist. The occurrence of modulational instability is investigated.