ﻻ يوجد ملخص باللغة العربية
In the quiet Sun, magnetic fields are usually observed as small-scale magnetic elements, `salt and pepper, covering the entire solar surface. By using 3D radiative MHD numerical simulations we demonstrate that these fields are a result of local dynamo action in the top layers of the convection zone, where extremely weak `seed magnetic fields can locally grow above the mean equipartition field (e.g., from a $10^{-6}$ G `seed field to more than 1000 G magnetic structures). We find that the local dynamo action takes place only in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into deeper layers by convection downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and the horizontal fields above the photosphere can be explained by multi-scale magnetic loops produced by the dynamo.
Magnetic fields are usually observed in the quiet Sun as small-scale elements that cover the entire solar surface (the `salt and pepper patterns in line-of-sight magnetograms). By using 3D radiative MHD numerical simulations we find that these fields
We explore effects of random non-axisymmetric perturbations of kinetic helicity (the $alpha$ effect) and diffusive decay of bipolar magnetic regions on generation and evolution of large-scale non-axisymmetric magnetic fields on the Sun. Using a reduc
We quantify possible differences between turbulent dynamo action in the Sun and the dynamo action studied in idealized simulations. For this purpose we compare Fourier-space shell-to-shell energy transfer rates of three incrementally more complex dyn
One of the puzzling features of solar magnetism is formation of long-living compact magnetic structures; such as sunspots and pores, in the highly turbulent upper layer of the solar convective zone. We use realistic radiative 3D MHD simulations to in
Sunspots are cool areas caused by strong surface magnetic fields inhibiting convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars more active than the