ﻻ يوجد ملخص باللغة العربية
We study whether the relaxion mechanism solves the Higgs hierarchy problem against a high scale inflation or a high reheating temperature. To accomplish the mechanism, we consider the scenario that the Higgs vacuum expectation value is determined after inflation. We take into account the effects of the Hubble induced mass and thermal one in the dynamics of the relaxion.
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $
In hybrid inflation, the inflaton generically has a tadpole due to gravitational effects in supergravity, which significantly changes the inflaton dynamics in high-scale supersymmetry. We point out that the tadpole can be cancelled if there is a supe
We investigate the scenario that one flat direction creates baryon asymmetry of the unverse, while Q balls from another direction can be the dark matter in the gauge-mediated supersymmetry breaking for high-scale inflation. Isocurvature fluctuations
Inflationary scenarios motivated by the Minimal Supersymmetric Standard Model (MSSM) where five scalar fields are non-minimally coupled to gravity are considered. The potential of the model and the function of non-minimal coupling are polynomials of
We discuss models involving two scalar fields coupled to classical gravity that satisfy the general criteria: (i) the theory has no mass input parameters, (ii) classical scale symmetry is broken only through $-frac{1}{12}varsigma phi^2 R$ couplings w