ﻻ يوجد ملخص باللغة العربية
In hybrid inflation, the inflaton generically has a tadpole due to gravitational effects in supergravity, which significantly changes the inflaton dynamics in high-scale supersymmetry. We point out that the tadpole can be cancelled if there is a supersymmetry breaking singlet with gravitational couplings, and in particular, the cancellation is automatic in no-scale supergravity. We consider the LARGE volume scenario as a concrete example and discuss the compatibility between the hybrid inflation and the moduli stabilization. We also point out that the dark radiation generated by the overall volume modulus decay naturally relaxes a tension between the observed spectral index and the prediction of the hybrid inflation.
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $
We study whether the relaxion mechanism solves the Higgs hierarchy problem against a high scale inflation or a high reheating temperature. To accomplish the mechanism, we consider the scenario that the Higgs vacuum expectation value is determined aft
We discuss the phenomenological implications of hybrid natural inflation models in which the inflaton is a pseudo-Goldstone boson but inflation is terminated by a second scalar field. A feature of the scheme is that the scale of breaking of the Golds
We consider the thermal production of axino dark matter in high-scale supersymmetry where all the superpartners except the axino are heavier than the maximum and reheating temperatures. In this case, the axinos are produced dominantly in pairs from t
We present a mechanism for realizing hybrid inflation using two axion fields with a purely non-perturbatively generated scalar potential. The structure of scalar potential is highly constrained by the discrete shift symmetries of the axions. We show