ﻻ يوجد ملخص باللغة العربية
We revisit the background solution for scalar matter coupled higher derivative gravity originally reported in arXiv: 1409.8019[hep-th]. In this letter, we choose a convenient ansatz for metric which determines the first order perturbative corrections to scalar as well as geometry.
We investigate a systematic approach to include curvature corrections to the isometry algebra of flat space-time order-by-order in the curvature scale. The Poincare algebra is extended to a free Lie algebra, with generalised boosts and translations t
In this paper, we investigate the thermal effect on the Casimir energy associated with a massive scalar quantum field confined between two large parallel plates in a CPT-even, aether-like Lorentz-breaking scalar field theory. In order to do that we c
We study harmonic maps from a 3-manifold with boundary to $mathbb{S}^1$ and prove a special case of dihedral rigidity of three dimensional cubes whose dihedral angles are $pi / 2$. Furthermore we give some applications to mapping torus hyperbolic 3-manifolds.
Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified as the expectation value of a quantum field, evolving in a quantum effective potential. The shape
We describe in more detail the general relation uncovered in our previous work between boundary correlators in de Sitter (dS) and in Euclidean anti-de Sitter (EAdS) space, at any order in perturbation theory. Assuming the Bunch-Davies vacuum at early