ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum corrections to slow-roll inflation: scalar and tensor modes

64   0   0.0 ( 0 )
 نشر من قبل Magdalena Eriksson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified as the expectation value of a quantum field, evolving in a quantum effective potential. The shape of this potential is determined by the underlying tree-level potential, dressed by quantum corrections from the scalar field itself and the metric perturbations. Following [1], we compute the effective scalar field equations and the corrected Friedmann equations to quadratic order in both scalar field, scalar metric and tensor perturbations. We identify the quantum corrections from different sources at leading order in slow-roll, and estimate their magnitude in benchmark models of inflation. We comment on the implications of non-minimal coupling to gravity in this context.



قيم البحث

اقرأ أيضاً

We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter $epsilon(phi)$ and its derivatives $epsilon^{prime }(phi)$ and $epsilon^{primep rime }(phi)$, thereby extracting general conditions on the tensor-to-scalar ratio $r$ and the running $n_{sk}$ at $phi_{H}$ where the perturbations are produced, some $50$ $-$ $60$ $e$-folds before the end of inflation. We find quite generally that for models where $epsilon(phi)$ develops a maximum, a relatively large $r$ is most likely accompanied by a positive running while a negligible tensor-to-scalar ratio implies negative running. The definitive answer, however, is given in terms of the slow-roll parameter $xi_2(phi)$. To accommodate a large tensor-to-scalar ratio that meets the limiting values allowed by the Planck data, we study a non-monotonic $epsilon(phi)$ decreasing during most part of inflation. Since at $phi_{H}$ the slow-roll parameter $epsilon(phi)$ is increasing, we thus require that $epsilon(phi)$ develops a maximum for $phi > phi_{H}$ after which $epsilon(phi)$ decrease to small values where most $e$-folds are produced. The end of inflation might occur trough a hybrid mechanism and a small field excursion $Deltaphi_eequiv |phi_H-phi_e |$ is obtained with a sufficiently thin profile for $epsilon(phi)$ which, however, should not conflict with the second slow-roll parameter $eta(phi)$. As a consequence of this analysis we find bounds for $Delta phi_e$, $r_H$ and for the scalar spectral index $n_{sH}$. Finally we provide examples where these considerations are explicitly realised.
We present a complete formulation of the scalar bispectrum in the unified effective field theory (EFT) of inflation, which includes the Horndeski and beyond-Horndeski Gleyzes-Langlois-Piazza-Vernizzi classes, in terms of a set of simple one-dimension al integrals. These generalized slow-roll expressions remain valid even when slow-roll is transiently violated and encompass all configurations of the bispectrum. We show analytically that our expressions explicitly preserve the squeezed-limit consistency relation beyond slow-roll. As an example application of our results, we compute the scalar bispectrum in a model in which potential-driven G-inflation at early times transitions to chaotic inflation at late times, showing that our expressions accurately track the bispectrum when slow-roll is violated and conventional slow-roll approximations fail.
160 - Ian Huston , Karim A. Malik 2011
We numerically calculate the evolution of second order cosmological perturbations for an inflationary scalar field without resorting to the slow-roll approximation or assuming large scales. In contrast to previous approaches we therefore use the full non-slow-roll source term for the second order Klein-Gordon equation which is valid on all scales. The numerical results are consistent with the ones obtained previously where slow-roll is a good approximation. We investigate the effect of localised features in the scalar field potential which break slow-roll for some portion of the evolution. The numerical package solving the second order Klein-Gordon equation has been released under an open source license and is available for download.
In the landscape perspective, our Universe begins with a quantum tunneling from an eternally-inflating parent vacuum, followed by a period of slow-roll inflation. We investigate the tunneling process and calculate the probability distribution for the initial conditions and for the number of e-folds of slow-roll inflation, modeling the landscape by a small-field one-dimensional random Gaussian potential. We find that such a landscape is fully consistent with observations, but the probability for future detection of spatial curvature is rather low, $P sim 10^{-3}$.
The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا